

Performance Improvements for Reversible Solid Oxide Fuel Cell Systems (FE0031974)

Hossein Ghezel-Ayagh 2024 FECM / NETL Spring R&D Project Review Meeting

April 25, 2024

Objectives

- Advance Reversible Solid Oxide Fuel Cell (RSOFC) technologies for hybrid operation of water electrolysis as well as power generation, suitable for energy storage combined with capabilities for hydrogen production
- Achieve cell performance improvements, stack durability, and high system efficiency, resulting in the design of a MW-scale energy storage system with no carbon footprint and an anticipated storage system cost of <\$1000/kW at 50MW/year manufacturing level, leading to hydrogen production cost of <\$2/kg H₂ (at \$30/MWh electricity price)

 During charge, hydrogen is produced and stored using electric power During discharge, stored hydrogen and oxygen from air are used to produce electricity

With water as the only stored reactant, hydrogen-based storage has significant advantages for

long duration storage

• RSOFC benefits:

FuelCell Energy

- Inexpensive water is the only reactant added as an initial fill and regenerated with each discharge cycle
- Long duration achieved by adding low-cost hydrogen and water storage capacity, without the need to add more stacks
- Excess hydrogen can be produced and sold directly to costumers for additional revenue
- Geological storage of hydrogen can be used to provide weekly or seasonal storage

Discharging in fuel cell mode:

Charging in electrolysis mode:

Solid Oxide Hydrogen Based Energy Storage

3

Solid Oxide Technology Applications

Cell Technology for Reversible Operation

Cell Fabrication

Tape Casting

<u>C</u>o-Sintering

"TSC 3 Process"

Automated <u>Screen Printing</u>

Solid Oxide Cell (SOFC) Constituent Layers

Component	Materials	Thickness	Porosity	Process
Cathode	Conducting ceramic	~ 50 μm	~ 30%	Screen printing
Barrier layer	CGO	~4 μm	<10%	Screen printing
Electrolyte	YSZ	~5 μm	< 5%	Screen printing
Anode functional layer	Ni/YSZ	~8 µm	~ 40%	Screen printing
Anode support	Ni/YSZ	~0.3 mm	~ 40%	Tape casting

ID seal Od seal

Cell QC

CSA cell leak tester jig with thickness measuring tool

FuelCell Energy

Long-Term Stability of Cell Operation in Electrolysis Mode

Steady State Operation in Electrolysis Mode at 1 A/cm²

- 16 cm² cell configuration consisting of stack features:
- cross-flow pattern
- flow fields
- electrode contact layers
- glass seals

Negligible cell degradation observed after >6 months of operation

Reversible operation of a 16 cm² cell at ambient pressure (46 SOEC/SOFC cycles over 1,104 hours)

1,000-hour technology stack testing in RSOFC mode with 46 cycles showing ≤ 10 mV/khr degradation

RSOFC Stack Development

Stack Efficiency, % LHV

74% / 100%

Compact SOFC Architecture (CSA) Stack Platform

Electrochemical eff FC / EL

Power, kW 0.87 / 2.7 2.8/9.3 6.7 / 21.8 At 0.25 / 0.6 A/cm² (FC / EL) H2 production, kg/day At 0.6 A/cm² 6.6 15 2 Height, mm (in) 91 (3.6) 211 (8.3) 440 (17.3)

74% / 100%

74% / 100%

Operating conditions shown are representative of energy storage applications

High Volume Manufacturing

Robotic QC / Stacking Station

Automated screen printing, drying, cell QC, stack firing, and stack handling equipment

Expansion to 4 MW/year CSA Stack Production

FuelCell Energy

Stack Fabrication and Factory Acceptance Testing

Assembled stack (350 cells) prior to performance testing

- Near thermoneutral voltage (1.285 V/cell) at 0.4 mA/cm²
 - Overall stack temperature differentials < 10°C

• 45 cell RSOFC stack GT060248-0032

Cyclic O	perating	Conditions
----------	----------	------------

	Fuel Cell (Discharge)	Electrolysis (Charge)
Current density	0.2 A/cm ²	0.6 A/cm ²
Time on load	17.25 hours	5.75 hours
Utilizations	25% H ₂ , 30% Air	50% steam
H2/Steam	100%/0% (approx.)	22%/78%
Concentrations		

1 hour transition times resulting in total cycle time of 24 hours

45-Cell CSA Stack Tests

degradation observed in the test

15

RSOFC Pilot System Demonstration

FCE's Solid Oxide Electrolysis (SOEC) pilot system has been upgraded to RSOFC Energy Storage prototype system for reversible demonstration of ~15 kW charge and ~3 kW discharge cycles under EERE project DE-EE0008847

- Upgrade mainly consisted of:
 - Process: Piping & Instrumentation Diagram (P&ID), equipment installation, safety analysis, control philosophy
 - Electrical: power supply/load bank integration, instrumentation, control software and hardware

H2/Steam Recycle Blower from Mohawk Innovative Technology (MTI)

Fuel Cell Mode Load Bank

Power and controls cabinet SOEC Electrolyzer Module

Vent hood

Vaporizer

FuelCell Energy

150-Cell Stack for RSOFC System Demonstration

150-cell stack (GT60247-0005)

 150-cell stack was tested in electrolysis mode in the Pilot RSOEC System

- Furnace: 627 C
- Fuel: 50% H2O , 50% H2 @ 76.05 SLPM H2
- Air: 150 SLPM @ 40.5 A -- 76.05 SLPM H2O
- Usteam = 60.0%

Reversible Operation & Cycling

Results of 150-cell stack (GT60247-0005) cycling tests (DOE Contract DE-EE0008847)

150-cell stack (GT60247-0008)

In 2023 a new stack was fabricated and conditioned for system testing

•

System Dynamic Improvements

Installed a vaporizer pressure

- Installed proportional (instead of shutoff) valves on fuel recycling lines for charge and discharge modes, resulting in smoother transitions
- Implemented process control strategies to accelerate roundtrip transitions between charge and discharge

Cycling Tests of GT60247-0008

(DOE Contract DE-EE0008847)

- No significant stack performance degradation has been observed after completion of 32 cycles
- Overall system performance will be analyzed after planned 100 cycles of charge/discharge
 - Targeted goal is to verify less than 0.5% round trip efficiency (RTE) degradation per 100 cycles

Technoeconomic Analysis

8 MWhr RSOFC System Simplified Flow Diagram

RSOFC Cost of Commercial Units

Cost of energy storage < 100 \$/kWh is projected at annual production of >200 units of 1 MW systems

Wrap-up

Future RSOFC Pilot System Upgrade

Internal view of RSOFC Module

- The RSOFC Pilot System will be further upgraded to a capacity of 6 kW discharge and 32 kW charge.
 - Planned development of an advanced power conversion system including a robust algorithm for enhanced stack thermal management and transient load response, resulting in longer stack life and durability

RSOFC Energy Storage Pilot System

Stack Module Upgrade

28

32kW charge / 6kW discharge

• FCE is working with Center of Power Electronics System (CPES) at Virginia Tech to develop a bidirectional DC-DC Converter for RSOFC application

Center for Power Electronics Systems, Virginia Tech (VT)

FuelCell Energy

Optimization of DC-to-DC Conversion Topologies

Rise-time

Current ripple

- commercial cores
- **3-ch:** best performance among candidate topologies but complex

FuelCell Energy

- Both charging and discharging cycles of the solid oxide fuel cell are considered in the optimization of the power board
 - Ensuring that all components meet the requirements for both operating modes, for example, SiC MOSFET selection and paralleling arrangements
- The two-channel buck dc-dc converter has a superior weight and loss performance in addition to minimized coupled inductor complexity
- The converter design is near completion and the construction and demonstration of the prototype will follow

Future Work

• Pilot RSOFC system upgrade

- Install hydrogen compression and storage equipment
- Incorporate VT-developed power electronics hardware
- Develop and implement advanced power control software algorithms
- Conduct RSOFC system demonstration tests
 - Complete 100-cycle tests of a second 150-cell technology stack to identify operating condition parameters in each mode of charge/discharge which would optimize performance and reduce degradation
 - Plan for future tests of dual mid-size stacks configuration to checkout the advance power control software
 - Perform parametric analysis to maximize round trip efficiency

- Existing in-house hydrogen storage tanks rated at 300 psi
- Inspection to be followed hydrostatic testing (to ensure suitability for intended service)

Thank You

Acknowledgement: Support and Management under DOE Project: DE-FE0031974 Dr. Patcharin (Rin) Burke Mr. John P. Homer

Our purpose: Enable the world to be empowered by clean energy

