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Energy Technology Laboratory, in part, through a site support contract. Neither the 
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the support contractor, nor any of their employees, makes any warranty, express or 
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imply its endorsement, recommendation, or favoring by the United States 

Government or any agency thereof. The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or 

any agency thereof.
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NETL SOC Capability Overview

Generate comprehensive modeling toolsets for long-term SOFC performance prediction

Apply mitigation strategies to improve performance and longevity of  SOFC

CHALLENGE: SOC technology is cost prohibitive due to long-term performance degradation

APPROACH: Develop degradation modeling and mitigation tools to improve performance / longevity of SSEC

Systems Engineering and Analysis

• Techno-Economic Analysis
• Hybrid configuration assessment
• R&D Goals Evaluation

Electrode Engineering

• Degradation mitigation
• Microstructure optimization
• Technology transfer to industry
• System demonstrations
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Performance Degradation Modeling

• Degradation prediction tools
• Atoms-to-System scale bridging
• Experimental validation
• Advanced Gas, Temperature Sensors
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• Task 2: Cell and Stack Degradation Evaluation and Modeling
• Performance and degradation model development
• Microstructural analysis and analysis methods

• Machine learning for materials studies, electrode design

• Task 3: Electrode Engineering
• Infiltration for degradation mitigation

• R-SOC characterization
• Protonic SOC materials characterization and development

• Advanced electrode design and manufacturing

• S/TEM analysis of cell degradation

• Task 4: Strategic Systems Analysis and Engineering
• R-SOC, SOEC system studies
• SOFC scaling study, H2-fueled SOFC market study

• Task 5: Cyber Physical Modeling
• 1D real-time SOEC stack model development

• Controls design for dynamic operation of SOC stacks

NETL SOFC Work Plan Tasks

See “Recent Progress in Solid Oxide 
Cell Technology Analysis at NETL” by 
Greg Hackett at 9:30 AM

See “Cyber-physical Simulation of 
Solid Oxide Cell Hybrid Systems” by 
Biao Zhang at 2:45 PM



Computational materials design
 
Discovering higher performing, more stable materials
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• Proton-conducting SOCs can help lower operating temperatures, increase 
operational stability, and don’t have a diluted H2 stream

Proton-conducting SOCs
Expanding the degradation modeling framework’s material sets

Proton-conducting SOEC

• Materials needs:
• More active electrodes

• Electrolytes with higher s, higher H+ transference number

• Less expensive thermal processing

• SOEC, SOFC performance model code options created for 
proton-conducting systems

• NOTE: NETL’s available SOC stack manufacturing cost 
tool includes options for P-SOCs
• OSTI ID:1842511
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• A defect model solver was developed to allow incorporation of nonlinear δ-dependent 
defect reaction energies and entropies for calculating defect concentration of the triple-
conducting perovskites (La,Ba)Fe1-xMxO3-δ 

• H2 incorporation through [OHO ˙] and [HO ˙] (hydride) defects.

• Octave-based Script publicly available on NETL’ s EDX Server: 

 doi.org/10.2172/2328139

Triple-Conducting-Perovskite Defect Model Released

Y.L. Lee, et al., Submitted to ECS Transactions Vol. 111 for SOFC XVIII, 2023.

Electrode/Electrolyte materials

Input variables:
CLa, CM, QM

ΔHdef
 (δ, CLa, CM),

ΔSdef
 (δ, CLa, CM),

for 4 defect reactions:
Hydration, Reduction, 
Disproportionation,
Hydride formation

Program loops to output 
the defect model solution 

in a defined grid of T, P(O2), 
P(H2O) and their equivalent 

P(H2)/P(H2O)

Subroutines to generate plots: 
1. Brower diagrams (Cdef , P(O2), P(H2O)) 
2. Brower diagrams (Cdef , P(H2), P(H2O)) 

at T=873~1273K
3. Cdef

 temperature dependences at 
specified P(O2)/P(H2O)

4. Cdef
 temperature dependences at 
specified P(H2)/P(H2O)



P(H2)/P(H2O) Brouwer Diagrams of (La0.1Ba0.9)(Fe0.9M0.1)O3-δ at T=1073K



Temperature dependencies of VO
”, OHO˙, and HO˙



• Hydride ([𝑯𝑶
• ]) defect formation added for proton conduction at low P(O2)

Proton diffusion in Ba(Co, Fe, Zr, Y)O3-d (BCFZ/Y)

[𝑂𝐻𝑂
∙ ] + [𝐻𝑂

• ] → 𝑐𝐻

• Calculating 𝑐𝐻 and 𝜎𝐻  

Zohourian, R., Merkle, R., & Maier, J. (2017). Solid State Ionics, 299, 64–69. 

𝐻2
(𝑔)

+ 2[𝑂𝑂
x]+ 2[𝑀𝐵

• ] ⇌ 2 𝑂𝐻𝑂
• + 2[𝑀𝐵

x]

1

2
𝑂2

(𝑔)
+ [𝑉𝑂

••]+2[𝑀𝐵
x] ⇌ [𝑂𝑂

x ]+ 2[𝑀𝐵
• ]

[𝑂𝑂
x ] + 2 [𝑀𝐵

• ] + [𝐻𝑂
• ] ⇌ [𝑉𝑂

••]+2[𝑀𝐵
x] + 𝑂𝐻𝑂

•  

1. Hydrogenation (proton) reaction

2. Oxidation reaction

3. Hydride formation

• Defect reaction equations

1. Hydrogen concentration

2. Hydrogen conductivity

Lee, Yueh-Lin, et al. ECS Transactions 111.6 (2023): 1823.

Experiments

(Clemson)
DFT

(UW-Madison)

JH: Hydrogen permeation 

flux

F: Faraday constant

R: gas constant

k: Boltzmann constant

L: membrane thickness 

cH: Hydrogen conc. [atoms/m3]

DH: self-diffusion coefficient 

[m2/s]

z: charge number

Goal

𝜎𝐻 =
4𝐹2𝐿∙𝐽𝐻2

𝑅𝑇
ln

𝑃𝐻2
′′

𝑃𝐻2
′  =

𝑧2𝑒2𝑐𝐻𝐷𝐻

𝑘𝑇

Duffy, Jack H., et al., Membranes 11.10 (2021): 766.



Initial partial pressures: PH2: 0.05 atm , PO2: 0.002 atm

Proton diffusion in Ba(Co, Fe, Zr)O3-d (BCFZ)

H conductivity H concentration

Hydride formation improves match with experimental data



O p-band correlates well with air electrode material properties

Developing materials through DFT

15
[1] Lee, et al., Eng Env Sci (2011) [2] Jacobs, et al., Adv. Eng. Mat. (2018)
[3] Jacobs, et al., Chem. Mat. (2019)

ORR 

surface 

exchange

[1]

From predicted k* using DFT-

calculated O p-band center of 

>2100 perovskites, NETL examined 

Ba(Fe, Co, Zr)O3 (BFCZ) materials

LSCF

BSCF



Higher kchem, improved stability, not enough sel

BFCZ (Zr = 25, 50, 75%) Performance

16

All BFCZ compositions highly active, on 

par with BSCF, with only 0.5 log kchem 

difference over entire Zr range

[1] Jacobs, R., et al. Adv. Eng. Mat. (2022)

LSCF/BFCZ75 composite

LSCF/BFCZ75 composite shows about 9x 

reduction in ASR at 800 °C, 65% less 

performance degradation vs. LSCF



Using machine learning for faster calculations, larger sampling space

Machine learning prediction of properties

17

Jacobs, R., et al. Adv. Eng. Mat. (2024), just accepted

Data points discussed:  Jacobs, R., et al., ACS Applied Energy Materials 7(8), 3366-3377, 2024.

• 749 data points from 313 studies for 
299 unique perovskite compositions

• Elemental features calculated using 
MAST-ML (UW-M) instead of using DFT

• 19 million perovskite oxides were 
examined using ML model

Property
Number of 

studies 
examined

Number of 

measurements 
extracted

Number of 

unique 
materials

kchem 70 98 62

Dchem 56 83 58

k* 39 80 48

D* 37 66 42

ASR 235 422 257



• Trained machine learning model could predict properties faster and at least as accurately than 
DFT-based study and could cover a larger space containing traditionally less-explored elements 
(e.g., K, Bi, Y, Ni, Cu).

Machine learning predicted electrode materials

18
Jacobs, R., et al. Adv. Energy. Mat, 2303684 2024. (doi.org/10.1002/aenm.202303684)

Jacobs, R., et al. ACS Applied Energy. Mat, 7(8), 3366, 2024. (doi.org/10.1021/acsaem.4c00125)

SrZr0.125Nb0.125Co0.625Cu0.125O3 (SZNCCu),
K0.25Sm0.125Sr0.625Nb0.125Ta0.125Co0.75O3 (KSmSCNT)
Bi0.125Sr0.875Y0.125Ni0.125Co0.75O3 (BiSYNC)SCCN: Xin, H. Nature Energy (2022), Zhai, S., et al. Nature Energy (2022)7(8), 3366



Training on materials known 
prior to 2003 suggests high 
performing materials in the 

Ba(Fe, Co, Zr)O3 space, 
suggesting BSCF and BFCZ could 
have been predicted at the time 

using machine learning

Examining how many data points would be necessary to make advances

Time dependent cross-validation

19



Electrode Design and Engineering
 
Building better performing, longer lasting electrodes



Objectives
• Enhancement of performance and longevity

• Materials engineering

• Microstructure engineering

Benefits
• Cell/stack cost reduction

• Cell overpotential reduction

• Increased thermo-chemical/thermo-mechanical 
stability

• Reduced cost-of-electricity and/or cost of hydrogen

SOC Electrode Design and Engineering

DESIGN new materials and structures

DEVELOP tailored electrode designs

DEPLOY in commercial SOC systems

Approach

21



• Using in-house multiphysics code to optimize 
cathode performance by controlling infiltration 
and backbone structure
• Optimal catalytic properties for a given backbone 

composition/structure

• Optimal backbone composition/structure for given 
catalytic properties

• Optimal lifetime performance based on 
backbone/infiltrated particle degradation

Simulating infiltrated electrodes

Notation:   Backbone_LSM:YSZ-LSM/YSZ Particle size

Particle size:
-1,0,1,2,3,4
0 = Baseline
-1 = Coarser
1-4 = Finer

Volume fractions:
40:60
50:50
60:40

22



• LSC infiltration into LSM/YSZ overcame the spread in performance from the different 
backbones.

2023 Results for LSM/YSZ air electrodes

Experiments vs. Simulations

23
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2024 Update: LSCF/SDC Electrodes



Calibration of Numerical Model 

25

𝟕𝟓𝟎℃



PBC Infiltration of LSCF/SDC Backbones

26

Baseline  PBC-infiltrated

• As with LSM/YSZ, infiltration levelized the performance of all the backbones.

• Still suspect that microstructural discrepancies exist between real and simulated microstructures



• Ni-YSZ/SSZ/LSCF/SDC Samples operated at 1 A/cm2 at 850°C

• Post-mortem analysis is ongoing

• Infiltrated R-SOC testing beginning this quarter

Recent focus on SOEC infiltration before transition to R-SOCs

Additional Infiltration Results

5/3/2024 27
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• Automated spray deposition system built at WVU used to apply active anode, electrolyte, and 
active cathode layers. Deposition parameters adjusted to improve quality/performance
• Cathode polarization resistance at 800°C improved from 0.377 ohm-cm2 down to 0.0381 ohm-cm2

• Finer resolution nozzle installed, deposition width of 1.21 mm vs. 10.95 mm

Creating 3D microstructure gradients to control gradients in T, V

Additive Manufacturing of SOCs

5/3/2024 28

30/70 vol% NiO/YSZ 

and 5-mm PMMA 

70/30 vol% NiO/YSZ 

and 5-mm PMMA 

50/50 vol% NiO/YSZ and 1.5-mm PMMA 



Cell and Stack Degradation Modeling

Simulation-driven design of advanced SOCs



Integrated Cell Degradation Model

3D Electrode 
Microstructures

Degradation models
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• Coarsening
• Secondary phases
• Poisoning
• Interdiffusion
• Cracking/delamination

• Particle sizes
• Volume fraction
• Distributions
• Heterogeneity
• Tortuosity

• Polarization curves
• Impedance spectra
• T, P Distributions
• Hotspots

SOFC degradation from coarsening shown. Framework can be 

used in SOFC, SOEC, and r-SOC mode with multiple modes.
30



• SOC Simulations run on database of 1000s of synthetic microstructure covering large 
matrix of microstructural parameter combinations (particle sizes, phase fractions, particle 
size distribution, phase fraction distribution, etc.)

How to determine what’s a good or bad electrode?

Analyzing performance degradation

31

Need a single figure-of-merit that 

captures both initial performance 

and stability

Lifetime energy production chosen.

Presently: operation at a given current density,

 up to a given time

NETL Microstructure Resources
• SOC Synthetic Electrode Microstructure Database

• 1,970 unique 3-phase electrode microstructure files
• DOI: 10.18141/1988063

• PFIB-SEM 3D reconstructions of real SOFC electrodes:
 DOI: 10.18141/1425617

https://www.osti.gov/scitech/search/filter-results:FD/semantic:10.18141/1988063


SOFC Cathode Feature Importance Ranking

LSM/YSZ

D-LSM 

D-pore

Porosity

σ-pore
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σ-YSZ

HF-LSM

HF-YSZ

HF-pore
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Porosity
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σ-pore
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Impact on voltage decay [%/khr] Impact on lifetime energy [Wh/cm2]

Small LSM particle sizes are bad for voltage decay, but 

net good for lifetime performance - 

worthwhile tradeoff.
Lower LSM/YSZ ratio is good for both metrics

Lower is better Higher is better

32W. K. Epting et al., ECS Trans., 103, 909 (2021).

Each point represents a 
feature value from a 

specific simulated 
electrode microstructure
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Linking SOEC lifetime performance to economics

SOEC Figures of Merit
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“Lifetime” energy consumed – at a given 

current density (and hence H2 rate)
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Faraday’s law → kgH2/cm2/khr

“Lifetime” H2 produced – at a given 

voltage (chosen roughly thermoneutral)



Feature Importance
Impact on H2 Produced 

[kg/cm2/khr]

Impact on energy consumed 

[Wh/cm2/khr]

Low Ni/YSZ ratio, low porosity, small solid particles beneficial for both, but 

rankings are different

Other figures of merit (e.g. degr. only) may show different dependence
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Making specific recommendations: SOEC

Fuel Elec. from supplier A

Fuel Elec. from supplier B

Biggest drain was pore size

35

Commercial electrodes’ 
initial microstructural 

parameters (measured)

ML model trained on bank 
of results from synthetic 

microstructures

SHAP analysis to estimate 
feature impact in 

commercial electrodes

Chosen metric was 
H2 produced

Low Ni/YSZ ratio, small solid particles 
were good choices



• Samples from Materials Systems Research Inc. (MSRI, Salt Lake City, UT).

SOFC Recommendations

36

P1 Cathode

P2 Cathode

P2 Anode

Biggest drains are LSM/YSZ ratio and DLSMSmall YSZ powder was a good choice

Chosen metric was 
lifetime energy



Conclusions
• Materials discovery using machine learning can screen an even larger parametric space than 

previous high throughput methods

• Modeling is useful tool for deeper interpretation of performance data, designing more durable 
electrodes, and providing context to literature results

• NETL continues to develop advanced electrode design and fabrication tools for more optimized 
lifetime performance

How can NETL help you?
• NETL’s synthetic microstructure database, real 3D microstructures, microstructural analysis tools, 

and defect modeling tools are available to the public

• NETL can collaborate with partners, using partner data and conditions to run performance 
degradation and optimization simulations 

Wrap Up

37



• “Cation Migration and LSCF Decomposition Related to Long Term Operation Mode as 
Revealed by Electron Microscopy” – Yoosuf Picard

• “In-House Developed Multiphysics Simulation for the Performance of Solid Oxide Cells 
(SOCs)” – Jian Liu

• “Defect Thermodynamics and Transport Properties of Perovskite and Fluorite Materials 
for Solid-Oxide and Proton Conducting Oxide Cells Evaluated Based on Density Functional 
Theory Modeling” – Yueh-Lin Lee

• “Pathway Study for Large-Scale Hydrogen Production from Solid Oxide Electrolysis Cell 
Technology” - Kyle Bucheit and Alex Noring

• “Modeling Ni Coarsening under Humid Atmosphere in Electrode of Solid Oxide Cells” - 
Yves Mantz

• “Inter- & Intra-Granular Nanostructure Degradation of YSZ in Electrolyte Under SOEC 
Operation“ – Yun Chen and Xueyan Song 

2024 FECM Project Review Posters
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