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* General Project Objectives

* Large-scale quantum simulations for candidate materials
¢ Quantum information science for NV-center sensors

* Quantum optimal control frameworks

* Summary
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General Project Objectives
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Properties to control:

1. Detection sensitivity
2. Quantum coherence
3. Long-term dynamics
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NV-Center Sensors

e Nitrogen-vacancy (NV) centers: structural point defects in diamonds

e Stable, localized electron spin can be used as sensor, controlled by
electromagnetic pulses

* Coherence signals can persist at 700 — 1000 K, essential for harsh fossil
energy environments




NV-Center Sensors

* NV centers near the surface have not been thoroughly explored
* Density functional theory (material simulation method) calculation:
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Large-Scale Quantum Simulations

* Mean square displacement of two locations, 1000 °C
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NV—Cen’rer Sensors

e NV-centers near surface can enable sensitive detection of chemical
analytes in fossil energy infrastructures

. . O
[+]

....... T & -
. ~ .
E! g
R S 8
=3 =
= /-8 .
Y] o NV-center in
:‘ o - -
o c diamond lattice
- 1 -~

g

NV-center sensor material




Excited-State QM for Dynamics

* (1) NV-center configurations down-selected with density functional
theory

* (2) Excited-state quantum mechanics will probe real-time interactions
between NV centers & EM fields to understand sensor mechanisms

* Electromagnetic radiation (i.e., light) has two components

Direction of

E polarization
e Magnetic pulse (B) - spin @ (7\
e Electric pulse (E) - charge i »jg.l
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NIC-CAGE Algorithm

o NIC-CAGE: Novel Implementation of Constrained Calculations
for Automated Generation of Excitations

Computer Physics Communications 258 (2021) 107541

. . : : 1N
Contents lists available at ScienceDirect COMPUTER PHYSICS
COMMUNICATIONS

Computer Physics Communications

journal homepage: www.elsevier.com/locate hﬂfrffwwwelswiﬂcomﬂoc
atefcpc

NIC-CAGE: An open-source software package for predicting optimal
control fields in photo-excited chemical systems™ ™"

Akber Raza*!, Chengkuan Hong "', Xian Wang ¢, Anshuman Kumar ¢, Christian
R. Shelton”, Bryan M. Wong “¢¢-"*
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Results of NIC-CAGE

 Transition in vibrational system: 3 -> 5 excited state
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Results of NIC-CAGE

* 3 resonance frequencies
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QOC Problem for NV-centers

* N'V-center sensors are controlled by external magnetic pulses

* Excited-state quantum mechanics is an initial value problem

e Challenge: How to construct magnetic pulses that enable desired
behavior in NV center? Inverse problem in quantum mechanics

e Solution: Quantum optimal control (QOC) is the tool to solve for
controlling pulses
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Modified NIC-CAGE Algorithm

* Make an initial guess of the controlling pulses B(t)

e [teratively optimize the pulse: B® = BU~D +y 5 B(?l]‘l)
B -+1/2 A
| R
1 III temporal shape of B(t)
tf I
td vertical arrows = gradients
il t ST .
WII'F 1 indicating how amplitude
\ IvI changes to maximize
r i transition probability
B % > T < j+§ Y t/l- 14



Modified NIC-CAGE Algorithm

d/
dB(-1)
* | is the loss function, typically defined as probability of transition

P(|¢N>) — Kwtargetl'wa)

of pulse amplitude

® d]
dB(-1)
gradient evaluation in neural networks

2 : . :
, may include regularization terms like square

(a functional of time) is evaluated with backpropagation as

* v is the update rate, evaluated with bisection line-search
* [ is the iteration
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- Symmetry-Assisted Hamiltonian

Reduction

e Symmetry-assisted method: Reduce the size of Hamiltonian for multi-
qubit systems

¢ Featured Article in AVS Quantum Science

Accelerating guantum optimal control
of multi-qubit systems with symmetry-based
Hamiltonian transformations @

Cite as: AVS Quantum Sci. 5, 043801 (2023); doi: 10.1116/5.0162455
Submitted: 14 June 2023 - Accepted: 5 September 2023 -
Published Online: 3 October 2023 e e
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Reduction

e Featured in AVS Newsletter:
Beneath the AVS Surface

November 2023

metry-Assisted Hamiltonian

Accelerating Quantum

Optimal Control of Multi- 1, .

qubit Systems with !

Symmetry-based 6 N \ 3

Hamiltonian ' V4

Transformations K ngWWF‘ B.(t)
L \ A x

Authors: Xian Wang, Mahmut Sait N 'y

Okyay, Anshuman Kumar, and Bryan M. o -I-.'-"

Wong 5 | 4

Publication: AVS Quantum Sci., 5, B

043801 (2023) By(t) o

READ ARTICLE

We present a novel, computationally efficient approach to accelerate quantum optimal control
calculations of large multi-qubit systems used in a variety of quantum computing applications.
By leveraging the intrinsic symmetry of finite groups, the Hilbert space can be decomposed
and the Hamiltonians block diagonalized to enable extremely fast quantum optimal control
calculations. Our approach reduces the Hamiltonian size of an n-qubit system from 2"

x2M to O(nxn) or O((2"/n)x(2"/n)) under S, or D, symmetry, respectively. Most importantly,
this approach reduces the computational runtime of qubit optimal control calculations by
orders of magnitude while maintaining the same accuracy as the conventional method. As
prospective applications, we show that (1) symmetry-protected subspaces can be potential
platforms for quantum error suppression and simulation of other quantum Hamiltonians and

(2) Lie—Trotter—Suzuki decomposition approaches can generalize our method to a general
variety of multi-qubit systems.
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QOC Chdllenge'|

Systems

® Challenge: When there are multiple qubits, size of Hamiltonian 2™ x 2"

increases exponentially by number of qubits n
e Static Hamiltonian

Pauli matrices:

n n
1 : 1 N
H, =B, 5 E az(l) + Cepl Z E Jz(l)az(l“) 1
i=1 i=1 0z = (

e Control Hamiltonian

n n — O
IS IS @ *7 (1
H,(t) = B,(t) - Ez o + B, (t) - Ez o
=1 =1

e Solution: symmetry-assisted Hamiltonian reduction

)
0
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Reduction

® Schrodinger equation

0
(= (©) = (Ho + Ho () ()

® 6-qubit system:

By(t’) B, 19



~Symmetry-Assisted HQWTFW

Reduction
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Results of Symmetry-Assisted Method

Non-coupled Nearest-neighbor coupling
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Results of Symmetry-Assisted Method

* Introduce coupling between further qubits to break degeneracy of
energy differences

* 4 qubits:
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Results of Symmetry-Assisted Method
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Summary

® Predictive quantum simulations: Provide rational guidance for
manufacturing quantum sensors for fossil energy infrastructures

* Modified NIC-CAGE: QOC algorithm for solving optimal controlling
pulses, featuring analytical gradients

- A.Raza. C. Hong, X. Wang, A. Kumar, C. R. Shelton, B. M. Wong, Comput.
Phys. Commun. 258, 107541 (2021)

o Symmetry-assisted method: QOC algorithm for multi-qubit systems,
featuring symmetry-based Hamiltonian reduction

- Wang, X,, Okyay, M. S., Kumar, A., & Wong, B. M. (2023). AVS Quantum
Science, 5(4). Featured Article, featured in AVS Newsletter
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