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General Project Objectives
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NV-Center Sensors
 Nitrogen-vacancy (NV) centers: structural point defects in diamonds
 Stable, localized electron spin can be used as sensor, controlled by 

electromagnetic pulses
 Coherence signals can persist at 700 – 1000 K, essential for harsh fossil 

energy environments
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NV-Center Sensors
 NV centers near the surface have not been thoroughly explored
 Density functional theory (material simulation method) calculation:
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Large-Scale Quantum Simulations 
 Mean square displacement of two locations, 1000 ℃
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NV-Center Sensors
 NV-centers near surface can enable sensitive detection of chemical 

analytes in fossil energy infrastructures
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Excited-State QM for Dynamics
 (1) NV-center configurations down-selected with density functional 

theory

 (2) Excited-state quantum mechanics will probe real-time interactions 
between NV centers & EM fields to understand sensor mechanisms

 Electromagnetic radiation (i.e., light) has two components

 Magnetic pulse (B) - spin

 Electric pulse (E) - charge

8



Quantum Optimal Control (QOC) 
Problem
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NIC-CAGE Algorithm
 NIC-CAGE: Novel Implementation of Constrained Calculations 

for Automated Generation of Excitations
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Results of NIC-CAGE
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 Transition in vibrational system: 3 -> 5 excited state



Results of NIC-CAGE
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 3 resonance frequencies



QOC Problem for NV-centers
 NV-center sensors are controlled by external magnetic pulses

 Excited-state quantum mechanics is an initial value problem
 Challenge: How to construct magnetic pulses that enable desired 

behavior in NV center? Inverse problem in quantum mechanics

 Solution: Quantum optimal control (QOC) is the tool to solve for 
controlling pulses
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Modified NIC-CAGE Algorithm
 Make an initial guess of the controlling pulses 𝐵𝐵(𝑡𝑡)

 Iteratively optimize the pulse: 𝑩𝑩(𝑙𝑙) = 𝑩𝑩(𝑙𝑙−1) + 𝛾𝛾 d𝐽𝐽
d𝑩𝑩(𝑙𝑙−1)
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vertical arrows = gradients 
indicating how amplitude
changes to maximize
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Modified NIC-CAGE Algorithm
𝑩𝑩(𝑙𝑙) = 𝑩𝑩(𝑙𝑙−1) + 𝛾𝛾

d𝐽𝐽
d𝑩𝑩(𝑙𝑙−1)

 J is the loss function, typically defined as probability of transition 
𝑃𝑃(| ⟩𝜓𝜓𝑁𝑁 ) = 𝜓𝜓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝜓𝜓𝑁𝑁

2, may include regularization terms like square 
of pulse amplitude


d𝐽𝐽

d𝑩𝑩(𝑙𝑙−1) (a functional of time) is evaluated with backpropagation as 
gradient evaluation in neural networks

 𝛾𝛾 is the update rate, evaluated with bisection line-search
 l is the iteration
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Symmetry-Assisted Hamiltonian 
Reduction
 Symmetry-assisted method: Reduce the size of Hamiltonian for multi-

qubit systems
 Featured Article in AVS Quantum Science
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Symmetry-Assisted Hamiltonian 
Reduction
 Featured in AVS Newsletter:
    Beneath the AVS Surface
    November 2023
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QOC Challenge in Multi-Qubit 
Systems
 Challenge: When there are multiple qubits, size of Hamiltonian 2𝑛𝑛 × 2𝑛𝑛 

increases exponentially by number of qubits 𝑛𝑛
 Static Hamiltonian
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 Control Hamiltonian
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 Solution: symmetry-assisted Hamiltonian reduction
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𝜎𝜎𝑧𝑧 = 1 0
0 −1

𝜎𝜎𝑥𝑥 = 0 1
1 0

𝜎𝜎𝑦𝑦 = 0 −𝑖𝑖
𝑖𝑖 0

Pauli matrices:



Symmetry-Assisted Hamiltonian 
Reduction
 Schrödinger equation

𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕

| ⟩𝜓𝜓 𝑡𝑡 = (𝐻𝐻0 + 𝐻𝐻𝑐𝑐(𝑡𝑡))| ⟩𝜓𝜓 𝑡𝑡

 6-qubit system:
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Symmetry-Assisted Hamiltonian 
Reduction
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Results of Symmetry-Assisted Method 
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Non-coupled Nearest-neighbor coupling

Runtime vs.
number of 
qubits 𝑛𝑛

Optimized
Controls



Results of Symmetry-Assisted Method 
 Introduce coupling between further qubits to break degeneracy of 

energy differences
 4 qubits:
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No coupling Nearest-neighbor coupling Full coupling



Results of Symmetry-Assisted Method 
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Summary
 Predictive quantum simulations: Provide rational guidance for 

manufacturing quantum sensors for fossil energy infrastructures
 Modified NIC-CAGE: QOC algorithm for solving optimal controlling 

pulses, featuring analytical gradients
-   A. Raza. C. Hong, X. Wang, A. Kumar, C. R. Shelton, B. M. Wong, Comput. 
Phys. Commun. 258, 107541 (2021)
 Symmetry-assisted method: QOC algorithm for multi-qubit systems, 

featuring symmetry-based Hamiltonian reduction
-   Wang, X., Okyay, M. S., Kumar, A., & Wong, B. M. (2023). AVS Quantum 
Science, 5(4). Featured Article, featured in AVS Newsletter
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