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Key Project Goals …. WHAT / WHY

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

– Fundamental NH3 flame data relevant to turbines:

▪ P, T >> ambient  →  relevant to compressor exit conditions …..

▪ strained & turbulent flames  ….  ….  ….

o Targeted outcome: expand published data

w/ new, useful data

(previously unreported)

– Predictive capability for NH3 combustion & emissions

▪ NOX formation kinetics integral w/ NH3 comb. kinetics …..

▪ CFD of turb. NH3 flames w/ NOx & NH3 slip (COMB) prediction

o Targeted outcome: capability for GT combustor design

– Develop & test NH3 gas-turbine combustor “@ scale”

▪ Single-nozzle-rig (SNR) scale demo. @ high P, T  ….

▪ Pure NH3 combustion @ 75% – 100% power

o Targeted outcome: < 30ppm NOx** & >99.99% efficiency

**Note recent ETN recommendations for NOx
     reporting with hydrogen-containing fuels 

(1)

(2)

(3)
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Approach & Progress …. HOW
̶ 4-year PoP:   Oct. 2022 – Sept. 2026 (currently at year-1.5)
̶ $3.3M Federal DOE funding
̶ $0.9M Customer funding - RTRC & UConn  (21.8% cost-share)

• Outcomes/Publications (to-date):

̶ Proceedings of the Combustion Institute – 40th CI Symposium paper in press for July 2024
̶ AIAA SciTech 2024 – paper # AIAA-2024-2019  ( DOI:10.2514/6.2024-2019 )

̶ Combustion Institute Meetings – 2023 US National & ESS Spring 2024 meeting papers
3Approved for public release.  © 2024 RTX.



1st Technical Task …. EXPERIMENTS ………………
Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

– Fundamental NH3 flame data relevant to turbines:

▪ P, T >> ambient  →  relevant to compressor exit conditions …..

▪ strained & turbulent flames  ….  ….  ….

o Targeted outcome: expand published data

w/ new, useful data

(previously unreported)

– Predictive capability for NH3 combustion & emissions

▪ NOX formation kinetics integral w/ NH3 comb. kinetics …..

▪ CFD of turb. NH3 flames w/ NOx & NH3 slip (COMB) prediction

o Targeted outcome: capability for GT combustor design

– Develop & test NH3 gas-turbine combustor “@ scale”

▪ Single-nozzle-rig (SNR) scale demo. @ high P, T  ….

▪ Pure NH3 combustion @ 75% – 100% power

o Targeted outcome: < 30ppm NOx** & >99.99% efficiency

(1)
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Lab-Scale Experiment #1:  Counterflow Flame Rig      Laminar (2D)

Relevance: –  Scarce data on NH3 flame extinction, esp. @ P, T > ambient.
 –  Stringent test of kinetic mechanisms, for comb. model development
 –  Canonical representation of turbulent “flamelet”

UConn configuration & capability:
• >7-atm pressure vessel & feeds
• up to 500 K preheat capability

uo

(“plug” flow)

L h a = du/dx CL~ 4uo / L
twin premixed 

flames
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Counterflow Experiments – Measure Flow Uniformity & Strain

Velocity magnitude vector field

Air at 5 SLPM flowrate + N2 shroud  (a ~ 200 s-1)
1 atm, 295 K
L = 10.4mm; D = 10mm

Define:

Global / Centerline

strain rate

(for “plug” flow):

𝑎𝐺𝐿𝑂𝐵𝐴𝐿  ~
4𝑈𝐽𝐸𝑇

𝐿
 

Flame stretch:

𝑎𝑆𝑇𝑅𝐸𝑇𝐶𝐻 =
1

𝐴

𝑑𝐴

𝑑𝑡
 

FUEL / AIR

FUEL / AIR
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Counterflow Experiments – Procedure for Measuring Extinction 
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Sequence: –  Establish stable, premixed NH3 / air flames @ initial DSEPARATION  ……   twin flames fixed in space

 –  At fixed P, : uniformly increase UJET & observe DSEPARATION 

 –  Quasi-steady approach to UEXT at extinction → 4𝑈𝐸𝑋𝑇

𝐿
= 𝑎𝐸𝑋𝑇_𝐺𝐿𝑂𝐵𝐴𝐿  

FUEL / AIR

FUEL / AIR
DSEPARATION
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Counterflow Experiments – Extinction Strain Rate vs. , p
FUEL / AIR

FUEL / AIR
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Accuracy / Error Assessment: 

–  Flowmeter precision incl. accuracy & calibration

–  (Many) representative data points repeated to 
establish variability / repeatability Roll-off in aEXT with pressure (non-linear)
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Counterflow Experiments – Pressure Effect on Extinction (3 ’s)
FUEL / AIR

FUEL / AIR
T = 300 K

 = 1.0

 = 0.75
 = 1.2

Stagni
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UConn Next Steps – TINLET, PIV  …  Turb. Flame Speed Rig

Turbulent intensity range: 15−25%

1. NH3 Bunsen Burner Outlet

2. Jet In Crossflow Port

3. Sharp-Edged Orifice Plate

4. H2 Pilot Burner Plate

Q3- Fabricate Turb. Flame Speed Rig:

• NH PLIF for turbulent flame structure imaging

• High-speed PIV for turbulent flow-velocity 

characterization

• Turbulent intensity enhancement utilizing

jet-in-crossflow & contraction section

[e.g. Michigan*/Lund** Hi-Pilot/DRZ]

*J.Driscoll, Univ. of  Mich.; **M.Alden, Lund Univ.

Ongoing Counterflow Flame Rig Work: 

–  PIV measurements for local velocities → SL & aEXT

–  300K to 500K TINLET experiments → aEXT vs. T, P, 

Approved for public release.  © 2024 RTX.



NOx analyzer

Viewport

Relevance: –  Scarce data on NH3 flames & NOx formation at >>10-atm.
 –  Capability to evaluate staged (RQL or “RRQL”) combustion of NH3

11

Lab-Scale Experiment #2:  High-P Flat-Flame Rig      Laminar (1D)

FUEL / AIR

RTRC configuration & capability:
• 450 to >500+ K preheat capability (>25-atm w/new heater install.)

• 10 to >25-atm pressure vessel & feeds … fuel, air, & N2 chamber flow
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Flat-Flame Exper. – Premixed “Adiabatic” Burner & Emissions

FUEL / AIR

Traversable Emissions

  Probe (Air-Cooled)

NOx analyzer

ppm NOx

NH3 analyzer

% NH3

...

1-atm 1-atm
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1D ~ 1.5”
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Flat-Flame Experiments – FTIR Measurements of NOx & NH3

FUEL / AIR

NH3 / air flames 

@ P = 3-atm

TINLET = 450 K

FTIR + O2 
…

Measured NOx Values  –  Rich vs. Lean NH3 Flame Emissions:

Note NH3 flames do not anchor stably 
w/out preheat, especially @ P > PAMBIENT  

• 450 K preheat

• 12 cm/s burner face velocity

•  ~ 60 ms to 1D sample-probe location

• NEXT STEPS: - NH3 & air preheat  as P  for stable flat flames

 - Rich, lean, & staged NOx / NH3 studies vs. P, T

 - Burner instrumentation & QLOSS characterization / control

Approved for public release.  © 2024 RTX.
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Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

– Fundamental NH3 flame data relevant to turbines:

▪ P, T >> ambient  →  relevant to compressor exit conditions …..

▪ strained & turbulent flames  ….  ….  ….

o Targeted outcome: expand published data

w/ new, useful data

(previously unreported)

– Predictive capability for NH3 combustion & emissions

▪ NOX formation kinetics integral w/ NH3 comb. kinetics …..

▪ CFD of turb. NH3 flames w/ NOx & NH3 slip (COMB) prediction

o Targeted outcome: capability for GT combustor design

– Develop & test NH3 gas-turbine combustor “@ scale”

▪ Single-nozzle-rig (SNR) scale demo. @ high P, T  ….

▪ Pure NH3 combustion @ 75% – 100% power

o Targeted outcome: < 30ppm NOx** & >99.99% efficiency

(2)
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2nd Technical Task …. MODELING ………………

FOCUS HERE:

Approved for public release.  © 2024 RTX.



• Cantera, open-source computational framework developed by Dave Goodwin at Caltech

• Models developed for flame speed, chemical reactor networks (CRN), and counterflow flames (premixed & non-premixed)

• Additional tools developed to perform sensitivity analysis, including feature sensitivity (e.g. extinction strain rate), reaction 

path, chemical mechanism reduction and other diagnostic tools

Computational Methods

(iii) NH3 Counterflow Flames: Premixed and Non-Premixed

Premixed Counterflow Flames Non-Premixed Counterflow Flames

Air

N  

flame

   g    o  pl   

(i) Freely Propagating Premixed Flames (Flame Speed)

(ii) NH3 Chemical Reactor Network (CRN) Models

FOCUS HERE
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Chemical Kinetic Mechanisms

• Glarborg et al. Mechanism (2018 & 2022 versions)
    [Glarborg, Miller, Ruscic, Klippenstein: Modeling nitrogen chemistry in combustion, Prog. Energy  Combust. Sci. (2018) 31-68]

     [Glarborg: The NH3/NO2/O2 system: Constraining key steps in ammonia ignition and N2O formation, Combust. Flame, Vol. 257 (2023)]

• Stagni et al. Mechanism (2020)
    [Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli: React. Chem. Eng. 5 (2020) 696–711]

• Powell & Papas et al. Mechanism- (2010 & 2011 versions) → RTRC
     [Powell, Papas, Dreyer: Hydrogen- and C1-C3 Hydrocarbon-Nitrous Oxide Kinetics in Freely, Propagating and Burner Stabilized 

     Flames, Shock Tubes, and Flow Reactors, Combust. Sci. Tech. 182 (2010) 252-283]

     [Powell, Papas, Dreyer: Flame Structure measurements of NO in Premixed Hydrogen-Nitrous Oxide Flames, Proc. Combust. Inst. 

     33 (2011)  1053-1062]

𝟑  𝑵𝑯𝟑 +  𝑵𝑯𝟐  𝑵𝟐𝑯𝟑 +  𝑯𝟐

𝟐  𝑵𝑯𝟐 + 𝑵𝑶 𝑵𝑵𝑯 + 𝑶𝑯

𝟏  𝑵𝑯𝟐 + 𝑵𝑶 𝑵𝟐 + 𝑯𝟐𝑶

• Two “Powell” mechanisms differ by only   different rate expressions for amine radical reactions:

Selected published, comprehensive N/H chemical mechanisms

• Open-source computational framework developed by Dave Goodwin at Caltech

16Approved for public release.  © 2024 RTX.



Stagni 

Mechanism

RTRC Predictions vs. UConn Measurements (1/2)

17

…

𝑞𝑟 =  −4𝜎𝑝 𝑇4 − 𝑇𝑜
4  

Modified Counterflow Model scripts to account for radiative heat loss

Radiative heat loss per unit volume 

(𝜎 = Stefan-Boltzmann constant, 𝑇𝑜 = ambient unburnt reactant temp.,

  𝑝 = total Planck’s mean absorption coefficient)
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RTRC Predictions vs. UConn Measurements (2/2)
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Stoichiometric Ammonia-Air at 298 K

𝟑  𝑵𝑯𝟑 +  𝑵𝑯𝟐  𝑵𝟐𝑯𝟑 +  𝑯𝟐

𝟐  𝑵𝑯𝟐 + 𝑵𝑶 𝑵𝑵𝑯 + 𝑶𝑯

𝟏  𝑵𝑯𝟐 + 𝑵𝑶 𝑵𝟐 + 𝑯𝟐𝑶

• Two “Powell” mechanisms differ by only   different 

rate expressions for amine radical reactions:
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(2018)
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Feature Sensitivity to Extinction Strain Rate
Ti = 301/333 K; P = 0.1 MPa

NH3/Air Counterflow Flame

1𝑎  𝑁𝐻2 + 𝑁𝑂 𝑁2 + 𝐻2𝑂 2𝑎  𝑁2𝐻2 + 𝑀 𝑁𝑁𝐻 + 𝐻 + 𝑀

NH2/NO Interactions

1𝑏  𝑁𝐻2 + 𝑁𝑂 𝑁𝑁𝐻 + 𝑂𝐻

NHi/N2Hi Reactions

2𝑏  𝑁2𝐻3 + 𝑀 𝑁2𝐻2 + 𝐻 + 𝑀

Ti = 301/333 K; P = 0.1 MPa

Sensitive and 

Uncertain rate 

constants

Sensitive rate 

constants:

(Powell et al., 2011)
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Counterflow NH3 Flames w/Heat Loss → Impact & Lean Limit 

C-shaped curve for counterflow premixed fuel-lean, ammonia-air flames showing i. adiabatic 

stretch-induced stretch rate ext,ad (solid line), ii. non-adiabatic stretch-induced stretch rates ext,S 

(dashed line), and iii. radiative-induced stretch rates ext,R (+ symbols).  

      

      
       

  at 

1 at 

𝑞𝑟 =  −4𝜎𝑝 𝑇4 − 𝑇𝑜
4  

Filled Symbols: Colson et al. (2016)

Open Symbols: UConn Data (2023-4)

NH3/Air Counterflow Flames
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H/C
  fuel

NH3
  fuel

Modeling Activities & Next Steps  ......  Toward GT Design

21

Turbulent combustion regime for NH3-fueled gas turbines:

• v’ & lo ~independent of fuel type (only aero dependent)

• vL  w/ NH3 fuel

• lL   w/ NH3 fuel

• shift by ~5 – 10x

CFD modeling of NH3-fueled gas turbine combustor:

• Challenges:
• Efficient flamelet models uncertain (regime = ??)
• NOx cannot be post-processed (integral to comb. rxns)

• For efficient GT design calculations, possible approaches:
• Reduced NH3/NOx kinetics w/transport, e.g. EDC**
• Steady RANS turbulence model saves computational power for chemistry/transport

**Eddy Dissipation Concept, Magnussen et al., Norwegian Inst. of Technol.  

• Outcomes/Publications (to-date):

̶ Proceedings of the Combustion Institute – 40th CI Symposium paper in press for July 2024
̶ AIAA SciTech 2024 – paper # AIAA-2024-2019  ( DOI:10.2514/6.2024-2019 )

̶ Combustion Institute Meetings – 2023 US National & ESS Spring 2024 meeting papers
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– Fundamental NH3 flame data relevant to turbines:

▪ P, T >> ambient  →  relevant to compressor exit conditions …..

▪ strained & turbulent flames  ….  ….  ….

o Targeted outcome: expand published data

w/ new, useful data

(previously unreported)

– Predictive capability for NH3 combustion & emissions

▪ NOX formation kinetics integral w/ NH3 comb. kinetics …..

▪ CFD of turb. NH3 flames w/ NOx & NH3 slip (COMB) prediction

o Targeted outcome: capability for GT combustor design

– Develop & test NH3 gas-turbine combustor “@ scale”

▪ Single-nozzle-rig (SNR) scale demo. @ high P, T  ….

▪ Pure NH3 combustion @ 75% – 100% power

o Targeted outcome: < 30ppm NOx** & >99.99% efficiency

3rd Technical Task …. GAS TURBINE COMBUSTOR DESIGN (PREP) …………
Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

22
**Note recent ETN recommendations for NOx
     reporting with hydrogen-containing fuels 

(3)
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Chemical Reactor Network (CRN) Modeling

▪ Validation against available simulation data from Li et al., Fuel 355 (2024) 129509.

▪ Overall “theoretical” NOx levels <30 pp  for a RQL architecture appear feasible 

▪ Established N/H mechanisms show wide variability for NOx

PSR
I

PFRI
PSR

II
PFRIINH3 Exhaust Outlet

Fuel-Rich Stage Fuel-Lean Stage

Air Secondary AirPrimary Air

CRN Model Schematic for RQL Combustor

R

Total 

Residence 

time  (ms)

PSR_I 

(ms)

PFR_I

(ms)

PSR_II

(ms)

PFR_II

(ms)

Pressure

(atm)

Inlet 

Temp. (K)

Outlet 

Temp. (K)

NOx*

(ppm)

20 3 14 2 1 12 600 1850 38.5

20 3 14 2 1 30 700 1850 30.1

30 3 24 2 1 30 700 1850 22.9

* 15% O2 dry

R = 1.25
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