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Key Project Goals .... wHAT/wHY

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

(1) VENTS — Fundamental NH; flame data relevant to turbines:
ER - . ngn
Eﬁp‘ab.sca‘e « P, T >>ambient - relevant to compressor exit conditions .....
jlities .
faclt - strained & turbulent flames .... —
o Targeted outcome: expand published data Sl = | _ SIS i
w/ new, useful data s W
(previously unreported) Fud
(2) ING — Predictive capability for NH; combustion & emissions oo NP Nz
MODEL 3 @\o“‘\\ e l OHH ,+M,H;NH‘ )

) ey :
+0 +HO

HNO +— NH; — NNH

+0H,0, |+ OH

/ N,OFH, U

ON NH ~fo

= NO, formation kinetics integral w/ NH; comb. kinetics ..... N
= CFD of turb. NH; flames w/ NO, & NH; slip (coumgs) Prediction

o Targeted outcome: capability for GT combustor design

(3) o o DEMO-  — Develop & test NH; gas-turbine combustor “@ scale”
S
DE = Single-nozzle-rig (SNR) scale demo. @ high P, T ....
= Pure NH; combustion @ 75% — 100% power

RTRC .
——— o Targeted outcome: < 30ppm NOx** & >99.99% efficiency
Research Center

UCDNN **Note recent ETN recommendations for NOx

“““““““““““““““““““““ reporting with hydrogen-containing fuels Approved for public release. © 2024 RTX. 2



— 4-year PoP: Oct. 2022 — Sept. 2026 (currently at year-1.5)

Approach & Progress .... How - 33w rederal DOE funding

— $0.9M Customer funding - RTRC & UConn (21.8% cost-share)

g UConn
\(eaf‘4 TR RN
oy i : - Modeling: )
- N o : :
— Single-nozzle high-pressure combustor, fired w/NH; fuel 1 _ sepfor design |
Year_g, — Measure emiss. & performance: NOx, efficiency, stability E — Kinetic improve. E
] . w/ exp. data |
| — CFD & validation |
(-2 ' — Turb. models for ! s i
yea ' NH3 comb. & NOx | — Turbulent S, rig, for
— 1-atm swirl-stab. burner | (no post-process.) | NH; @ P, T > ambient
— Piloting studiesw/H, ! (~20% turb. intensity)
\(eaf‘1 5 | S ' — CRN modeling |
Time - Flat-flame high-P burner ; : (}gﬁgt‘it:m:\:h . — Counterflow flame rig, compatible w/NH; fuel
(>>1-atm) for NOx eval. N "' = Measure strained flames w/ inlet P, T > ambient

* Outcomes/Publications (to-date):
— Proceedings of the Combustion Institute — 40t Cl Symposium paper in press for July 2024

RTFEIBC — AIAA SciTech 2024 — paper # AlIAA-2024-2019 ( DOI:10.2514/6.2024-2019 )
li.l[.':[hJCI\ltN — Combustion Institute Meetings — 2023 US National & ESS Spring 2024 meeting papers

ccccccccccccccccccccc
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1st Technical Task .... ExPERIMENTS

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

— Fundamental NH; flame data relevant to turbines:

Eﬁp‘ab_sca!e - P, T >>ambient - relevant to compressor exit conditions .....
HitieS .
facil - strained & turbulent flames .... .... ...
o Targeted outcome: expand published data
w/ new, useful data
(previously unreported)
O
RTRC
RTX Technology o)
Approved for public release. © 2024 RTX. 4
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Lab-Scale Experiment #1. Counterflow Flame Rig | Laminar (2D)

— Scarce data on NH; flame extinction, esp. @ P, T > ambient.
— Stringent test of kinetic mechanisms, for comb. model development

— Canonical representation of turbulent “flamelet”

Relevance:

UConn configuration & capability:
- >7-atm pressure vessel & feeds

- up to 500 K preheat capability

*
o
Camera for direct imaging ~ _.+*°
o*
y

Quartz window .
‘0

’f
”
* Connectedto QE-Pro -
spectrometer
* Precise vertical movement

*, twin premixed | Th¥ a = du/dx g ~ 4u,/ L

0"‘

*
» .
1ccD . flames J

camera “ ”

* PI-MAX3 " A\ (“plug” flow)
* Stationary “‘ ‘
* Change bandpass filters .

for different tasks ‘.‘ ‘ Cﬂﬂow

\ -

N
S e a1 @
Oxidizer/Fuel stream University of

Connecticut

‘e
0
‘e
‘.
0
e,

PIV, PLIF, Rayleigh
Thermometry eet

5
RTRC | ;s¢
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Counterflow Experiments — Measure Flow Uniformity & Strain

Velocity magnitude vector field
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Approved for public release. © 2024 RTX. 6




Counterflow Experiments — Procedure for Measuring Extinction

. . FUEL / AIR
, Ammonia/Air, ¢=1 ‘
—~ i | | | | | | | ]
E/ E 6.5 atm E ¢:j ggﬁ
s : 7
2  5r - FUEL / AIR
2 - PT . I Dseparation
S 4L _
© B - Decreasing Strain Rate
< N OQ ] ‘ (Laminar Flame Speed Measurement)
o _ ]
% 3 & 1 atm .
(<) - QQ) 1 Increasing Strain Rate
% _ o | 4 (Extinction Limit Measurement)
o 2 r 1 atm QE)' o B
- lextinction .
1 L | | | | | | | i
0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0.55
Nozzle Exit Velocity (m/s)

Sequence: — Establish stable, premixed NH; / air flames @ initial Dggppraion - twin flames fixed in space
bOth . . . . .
51]5)5 .e';fggriments At flxed P’ d)- unlformly Increase UJET & Observe DSEPARATION ¢
Ueonn & mede™d — Quasi-steady approach to Ugy; at extinction 2 L = g i opa;

TTTTTTTTTTTTTTTTTTTTT
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Counterflow Experiments — Extinction Strain Rate vs. ¢, p

FUEL / AIR

400
@ _ ¢
Jaso | B o Lo T=300K | ©latm —
o e © o2 atm =>
$ 300 £ S If
- i N \ O5 atm
®250 | £ 3 - FUEL / AIR
P00} €9 & £«
S E S - s & >
Sis0 | = o 350
= = o O - © U z
Q100 b= N %Eoﬁ‘eﬁ%a_. - E‘El £ 5300
— e |—e—| = c ["]
f-g 50 &~ @ - £ 3 < 250
—_— = E
0 X . X . . = 200
S
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 g
Equivalence Ratio g 10
I; 100
Accuracy / Error Assessment: © 0

— Flowmeter precision incl. accuracy & calibration

Pressure (atm)

RTRC - (Many) representative data points repeated to . . .
S establish variability / repeatability Roll—off in agg with pressure (non-linear)

ccccccccccccccccccccc
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Counterflow Experiments — Pressure Effect on Extinction (3 ¢'s)

250

Global Extinction Strain Rate (1/s)

RTRC  so

RTX Technology
Research Center
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UConn Next Steps — T\ g1, PIV ... Turb. Flame Speed Rig
Ongoing Counterflow Flame Rig Work: M %\J

— PIV measurements for local velocities 2 S, & Qpy; Q3- Fabricate Turb. Flame Speed Rig:

— 300K to 500K Ty, gy experiments 2 Qg vs. T, P, ¢ Turbulent intensity range: 15-25%

160

1. NH; Bunsen Burner Outlet
2. Jet In Crossflow Port
3. Sharp-Edged Orifice Plate
4. H, Pilot Burner Plate

* NH PLIF for turbulent flame structure imaging

* High-speed PIV for turbulent flow-velocity
characterization

295 315 335 355 375 395 415 435
Unburned Mixture Temperature (K)

» Turbulent intensity enhancement utilizing

=— ; o . .
3 jet-in-crossflow & contraction section 19.50 $15.00
[e.g. Michigan*/Lund** Hi-Pilot/DRZ]
*).Driscoll, Univ. of Mich.; **M.Alden, Lund Univ. 120.40
: 45.40
..... m M
..... | A
IR, - | 4 | 2 /II
o B B T 3 ' o | Lﬁd =
N 1 - 1 , \ ‘ ! All Dimensions
e > -t 3 B g ‘i} b ; I I In Millimeters 2] I: '/V
praa o~ P aeg _ & f———{ ®45.00
g R g = | 2 4 o - F SECTION E-E

Approved for public release. © 2024 RTX. 10



Lab-Scale Experiment #2: High-P Flat-Flame Rig | Laminar (1D)

Relevance: - Scarce data on NH, flames & NOx formation at >>10-atm.
— Capability to evaluate staged (RQL or “RRQL") combustion of NH

RTRC configuration & capability:
« 450 to >500+ K preheat capability (>25-atm w/new heater install.)
-+ 10 to >25-atm pressure vessel & feeds ... fuel, air, & N, chamber flow

b NOx analyzer ‘ .qlig/j = ‘ f' ‘ Refrigerated /

ISCO pumps - 5
lw o By
Z - ‘
il X

- e
afallVy I

e

Viewport
NH; flame
(@ =1.0)
at 3-atm

ressure
Appproved for public release. © 2024 RT)a-l

FTIR: Gas-sample analysis for NH;, NOx, ...
+0, analyzer included (but not H,)




Flat-Flame Exper. — Premixed “Adiabatic” Burner & Emissions

OC\!  perforation pattemn :
oo T
56 d=0.5mm

1 =0.7 mm

ITraversable Emissions
& Probe (Air-Cooled)

FUEL / AIR
NOx analyzer

- ppm NOXx

NH, analyzer

- % NH,

Burner Surface
~2400 holes, d=0.020"

Quartz Tube Chimney —
100% NH,-Air

1-atm

Sintered Metal : \
Flow Straightener Burner
Surface

[ ——

Ambient Inlet Heated Inlet

Temp. (<100F) Temp. (~200F)
\
%‘\;n/é RTX Fuel + Air Mix

Approved for public release. © 2024 RTX. 12




Flat-Flame Experiments — FTIR Measurements of NOx & NH,

4slom ~ 30 my/s

P=3bar, 3in AFT P=3bar. 3in AFT
5000 500 2.0
‘ 4+ Probe Measurements
18 } FUEL / AIR
4000 15 | —— Adiabatic Flame Model
—_ - A (Stagni et al. Mechanism)
£ 3000 13
o 10 F
O 2000 0s | - FTIR+ 0O,
2
0.5 |
1000
03 |
0.0 1 :
0 ¢ ¢ NH, / air flames
0.85 0.90 0.95 1.00 1.05 110 1.15 1.20 1.25 050 055 100 105 110 115 120 @ P = 3-atm
Equivalence Ratio Equivalence Ratio TineT = 450 K

450 K preheat
12 cm/s burner face velocity
* 1~ 60 msto 1D sample-probe location

NEXT STEPS: - NH, & air preheat T as P T for stable flat flames
- Rich, lean, & staged NOx / NH; studies vs. P, T
- Burner instrumentation & Q, og5 Characterization / control

Ve Note NH, flames do not anchor stably 5
w® RTX w/out preheat, especially @ P > Paysient

Approved for public release. © 2024 RTX. 13




2"d Technical Task .... MODELING

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

O
FOCUS HERE:
(ZgDEL'NG — Predictive capability for NH; combustion & emissions —_— NT Nz Oidiver
M : . L R S S
- NO, formation kinetics integral w/ NH; comb. kinetics ..... B NG AN
= CFD of turb. NH, flames w/ NO, & NHj; slip (ncoug) Prediction s 3 /.75
- . Fuel
o Targeted outcome: capability for GT combustor design ,
RTRC
RTX Technology O
Approved for public release. © 2024 RTX. 14
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Computatlonal Methods . Cantera

Cantera, open-source computational framework developed by Dave Goodwin at Caltech
Models developed for flame speed, chemical reactor networks (CRN), and counterflow flames (premixed & non-premixed)

Additional tools developed to perform sensitivity analysis, including feature sensitivity (e.g. extinction strain rate), reaction
path, chemical mechanism reduction and other diagnostic tools

| Flame

(i) Freely Propagating Premixed Flames (Flame Speed) e S L L
flam® in lab franie (NH, / Air mixture)
CARIVPY U, (¢]
(i) NH; Chemical Reactor Network (CRN) Models ... =

A

hd
>}
i Flame > Post Flamet. Products, T
Ar_ | (PsR) (PFR) ’
>1 'y =

(p = const)

Reactant
Heat Loss Heat Loss

(iif) NH; Counterflow Flames: Premixed and Non-Premixed

Premixed Counterflow Flames Non-Premixed Counterflow Flames
FOCUS HERE NH3/Air - Air *
stagnation plane Twin flames < ~—~ _flame

RTRC

RTX Technology
Research Center

ccccccccccccccccccc

NH,/Air

<~ >  stagnation plane
NH3ﬁ

Approved for public release. © 2024 RTX. 15



e
Chemical Kinetic Mechanisms

Selected published, comprehensive N/H chemical mechanisms

- Open-source computational framework developed by Dave Goodwin at Caltech Cantera

[

- Glarborg et al. Mechanism (2018 & 2022 versions)

[Glarborg, Miller, Ruscic, Klippenstein: Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci. (2018) 31-68]
[Glarborg: The NH4/NO,/O, system: Constraining key steps in ammonia ignition and N,O formation, Combust. Flame, Vol. 257 (2023)]

- Stagni et al. Mechanism (2020)
[Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli: React. Chem. Eng. 5 (2020) 696—711]

- Powell & Papas et al. Mechanism- (2010 & 2011 versions) = RTRC

[Powell, Papas, Dreyer: Hydrogen- and C;-C; Hydrocarbon-Nitrous Oxide Kinetics in Freely, Propagating and Burner Stabilized
Flames, Shock Tubes, and Flow Reactors, Combust. Sci. Tech. 182 (2010) 252-283]

[Powell, Papas, Dreyer: Flame Structure measurements of NO in Premixed Hydrogen-Nitrous Oxide Flames, Proc. Combust. Inst.
33 (2011) 1053-1062]

Ammonia Oxidation Pathway Schematic

+ Two “Powell” mechanisms differ by only 3 different rate expressions for amine radical reactions: . O NH; -~ NoH; =2,3,4)
™ s 2 +OH, H +M. H. NH
o o

(2) NH, + NO < NNH + OH
(3) NH3 + NHZ (—)NzHg + Hz

N
% RTX N Adapted from Miller et al. (1983)

Approved for public release. © 2024 RTX. 16



RTRC Predictions vs. UConn Measurements (1/2) e

400
)
> 350
[
T 300
oe
c
= 250
S
&a
c 200
[}
=
9 150
=
>
W 100
m
£
o 50
O
0 |
0.6 0.8 1.0
Equivalence Ratio
o Au‘nnon'la/Air.cj‘J:] \ .I . s
g b ]
g Oz ]
% TR ]
g ol ]
= [ ]
- b atm Qe)‘l extinction
1 L L L 1 L L 1
\/ 015 02 025 03 035 04 045 05 055
%\,é RTX Nozzle Exit Velocity (1/s)

stagnation plane

Mechanism

¢ latm
¢ 2atm
¢ 5atm

——Stagni_2atm_Adiabatic
——Stagni_5atm_Adiabatic

qr = —40i,(T* =T,

——Stagni_latm_Adiabatic » _ o
- - _stagni_latm_Radiation_Loss  Modified Counterflow Model scripts to account for radiative heat loss

- - = Stagni_2atm_Radiation_Loss

- - - Stagni_Satm_Radiation_Loss

350

300

2350

200

150

100

Global Extinction Strain Rate (1/s)

50

Radiative heat loss per unit volume
(o = Stefan-Boltzmann constant, T,, = ambient unburnt reactant temp.,
Kp = total Planck’s mean absorption coefficient)

Stagni

Roll—off in agy; with
pressure (non—linear)

Pressure (atm)

Approved for public release. © 2024 RTX. 17



RTRC Predictions vs. UConn Measurements (2/2)

1000

Stoichiometric Ammonia-Air at 298 K

Vo)

o

o
1

800 | -

Kinetic Models

— -« = Glarborg et al. (2018)

- #

700 |
600 |
500 |
400 |
300 |
200 |
100 |

0 1 1 1 1

Extinction Strain Rate (s)

Pressure (atm)

» Two “Powell” mechanisms differ by only 3 different
rate expressions for amine radical reactions:

(2) NH, + NO < NNH + OH
(3) NH3 + NHZ <—)N2H3 + Hz

S RTX

Approved for public release. © 2024 RTX.

10

Stagni et al. (2020)
Powell et al. (2011)
Powell et al. (2010)

—— - = Glarborg (2023)

Experimental Data
X Colson et al. (2016)
&9 Current Data

Global Extinction Strain Rate (1/s)

Global Extinction Strain Rate (1/s)

Global Extinction Strain Rate (1/s)

350

300 p

250 f

200 p

150 F

100 f

50
250

200 F

150

100 F

50
170

150 |

130 |

110 |

90 F

70

50

30

NH/Air F
—_—

stagnation plane

Pressure (atm)
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S
Feature Sensitivity to Extinction Strain Rate

T,=301/333K; P=0.1 MPa

H+ 02 <=> 0 + OH 4
NH2 + NO ==> NNH + OH A

NH + NH2 <=> H + N2H2 -
H + NO (+M) === HNO (+M) -
NZ2O (+M) <=> N2 + O (+M) A

V

2 OH <=> H20 + O 4 .
NH + 02 === HNO + O Model: -
NH3 + O <=> NH2 + OH - Glarborg mechanism
HZ + 0O === H + OH 4 (2018)

N+ NHZ2 <=> 2 H + N2
N2H2 + NO === N20 + NH2 1
NH3 + OH <==> H20 + NH2
H2 + OH ==> H 4+ H20 A
NNH <==> H + N2 -

H+ NH <=>H2 + N 1

H + NH2 (+M) ==> NH3 (+M)
H2ZNN ==> H2 + N2

NH + NO ==>H + N20 A
HNO + NH2Z <=3 NH3 + NO -
H+ N20 ===> N2 + OH A

H + NH3 ==> H2 + NH2 4

NH + O <=> H + NO -

NH2 + O <=> H + HNO 4
NH2 + OH <=> H20 + NH A
H2 + NH <=> H + NH2 A

H + N2ZH2 ==> H2 + NNH 4

H + HNO ==> H2 + NO -4

H+ 02 (+M) «=> HO2 (+M) A
NH2 + NO === H20 4+ NZ

\Y

o Illllllllllllll___...llll

02 04 06
Normalized sensitivity coefficient
NH,/NO Interactions

(1a) NH, + NO < N, + H,0
(1b) NH, + NO <& NNH + OH

Sensitive rate
constants:

S RTX

NH,/Air Counterflow Flame

(1) NHy + NO < Ny + H,0
(2) NH; + NO < NNH + OH
(3) NH; + NH, < NH; + H,

T,=301/333 K; P=0.1 MPa

H+ 02 <=> 0 4+ OH

NH2 + NO ==> NNH + O
+M==>H+ N

H 4+ NO (+M) === HNO (+M) 1

NH + NH2 <==> H + N2H2

N2H3 + M <=> H + N2H2 + M

2 NH2 === H2 + N2H2 4

N2O (+M) <==> N2 + O (+M) 4

NH + NO === NNH + O -

NH3 4+ O <==> NH2 + OH -

H20 + O ==> 2 OH 4

H2 + O <=>H + OH 4

NH3 + OH ==> H20 + NH2

NH2 + 02 <=> HNO + OH -

H2 + OH ==> H + H20 4

H2 + N <==>H + NH 1

H + NH3 <=> H2 + NH2

HNO + OH ==> H20 + NO -

NH2 + OH <==> H20 + NH -

2 NH2 <==> NH + NH3 4

H+ N2H2 <=> H2 + NNH +

NZ2HZ2 + OH === H20 + NNH A

H 4+ 02 (+M) === HOZ2 (+M)

H 4+ NH2 <=> H2 + NH +

N2ZH3 + NH2 ==> N2H2 + NH3 4

< NH2 + NO <=> H20 + N2

NH + NO <=> H + N20

NZHZ + NH2 <=> MH3 + NNH -

NH2Z + O <=> H + HNO 4

H + HNO <=> H2 + NO -1

\V

\V
III.I....I.--

Model:
RTRC mechanism

(Powell et al., 2011)

T

-0.05 0

01 02 03

Normalized sensitivity coefficient

NH,/N,H; Reactions
(2a) NH, +M < NNH +H+ M
(2b) NyH; + M < N,H, + H+ M

Sensitive and
Uncertain rate

constants
19
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-
Counterflow NH; Flames w/Heat Loss = Impact & Lean Limit

Extinction Stretch Rate (s)

RTRC

RTX Technology
Research Center

uuuuuuuuuuuuuuuuuuu

3

[
o

[

NH./Air
_ ——
stagnation plane —————
NH./Air
NH,/Air Counterflow Flames
] Filled Symbols: Colson et al. (2016)
Open Symbols: UConn Data (2023-4)
4
l‘* =
B ll Kext ,ad x 1800
diabatic
g 4 4 = T e ey
‘_g:\ qr = —40x, (T*—T, ‘3170‘6—{ f
. Q
S £ 1600
Kext,R ‘h‘* 4 ] 1 ] 1 & ::
£ ]
0.5 0.7 0.9 1.1 1.3 1.5 20T ;
. . "% :z | ) | Kext, Sli
Equivalence Ratio (¢) © 1400
o OT 20 40 60 80 100
Kext, R Stretch Rate, k (s) Kext, ad
C-shaped curve for counterflow premixed fuel-lean, ammonia-air flames showing i. adiabatic
stretch-induced stretch rate i, .4 (Solid line), 1i. non-adiabatic stretch-induced stretch rates g, 5
(dashed line), and iii. radiative-induced stretch rates i, g (+ symbols).
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Modeling Activities & Next Steps ...... Toward GT Design

* Outcomes/Publications (to-date):
— Proceedings of the Combustion Institute — 40t Cl Symposium paper in press for July 2024 ~—

— AIAA SciTech 2024 — paper # AIAA-2024-2019 ( DOI:10.2514/6.2024-2019 )
— Combustion Institute Meetings — 2023 US National & ESS Spring 2024 meeting papers

v'/v,  Ideally stitedreactor  Da=1(ly/l =v'/v)

Turbulent combustion regime for NH,-fueled gas turbines:
* v’ &£, ~independent of fuel type (only aero dependent)

108
* v ¥ w/ NH; fuel
« ¢, T w/ NH, fuel Vol
L . ) 3 /7'.9/7731‘@ W/f(/ 10*
* shift by ~5 — 10x Sastyg 76 2
e

CFD modeling of NH;-fueled gas turbine combustor:

* Challenges:
- Efficient flamelet models uncertain (regime = ??)
- NOx cannot be post-processed (integral to comb. rxns) 1

* For efficient GT design calculations, possible approaches: - e o pyr P 'o’L
- Reduced NH,/NOx kinetics w/transport, e.g. EDC**

w - Steady RANS turbulence model saves computational power for chemistry/transport
Se€ RTX

Approved for public release. © 2024 RTX. **Eddy Dissipation Concept, Magnussen et al., Norwegian Inst. of Technol. 21



3'd Technical Task .... GAs TURBINE COMBUSTOR DESIGN (PREP)

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

O

— Develop & test NH; gas-turbine combustor “@ scale”

(3) N &DEMO'
= Single-nozzle-rig (SNR) scale demo. @ high P, T ....

DES
= Pure NH; combustion @ 75% — 100% power
RTRC -
e —— o Targeted outcome: < 30ppm NOx** & >99.99% efficiency
Research Center
**Note recent ETN recommendations for NOx
reporting with hydrogen-containing fuels Approved for public release. © 2024 RTX. 22
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= Established N/H mechanisms show wide variability for NOx
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Chemical Reactor Network (CRN) Modeling

CRN Model Schematic for RQL Combustor

Exhaust Outlet

= Validation against available simulation data from Li et al., Fuel 355 (2024) 1295009.

= Overall “theoretical” NOx levels <30 ppm for a RQL architecture appear feasible

dr = 1.25
Total Tesr | | TeEr | | Tesr 1t | Teer 11 | PYESSUrE Inlet Outlet NOx*
Residence (ms)_ (msj (ms)_ (msj (atm) Temp. (K) | Temp. (K) | (ppm)
time t (ms)
20 3 14 1 12 600 1850 38.5
20 3 14 1 30 700 1850 30.1
30 3 24 1 30 700 1850 22.9

S RTX

* 15% O, dry

Approved for public release. © 2024 RTX.
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