

LOAD-Z

Low-NOx, Operable Ammonia Combustor Development for Zero-Carbon Power

F T4000® Aeroderivative Dual Fuel G as Turbine Engine.

COLLINS AEROSPACE | PRATT & WHITNEY | RAYTHEON

RTX Technology Research Center

2024 FECM/NETL Spring R&D Project Review Meeting April 24, 2024

Prime Contractor:RTX Technology Research Center (RTRC)Subcontractor:University of Connecticut (UConn)

RTRC

RTX Technology Research Center

This material is based upon work supported by the Department of Energy under Award Number DE-FE0032169

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Key Project Goals what / why

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

- Fundamental NH₃ flame data relevant to turbines:
 - P, T >> ambient \rightarrow relevant to compressor exit conditions
 - strained & turbulent flames

 <u>Targeted outcome</u>: expand published data w/ new, useful data (previously unreported)

NH -NO

- Predictive capability for NH₃ combustion & emissions
 - NO_X formation kinetics integral w/ NH₃ comb. kinetics \dots NO
 - CFD of turb. NH_3 flames w/ NO_{x} & NH_3 slip (η_{COMB}) prediction
 - Targeted outcome: capability for GT combustor design

- Develop & test NH₃ gas-turbine combustor "@ scale"
 - Single-nozzle-rig (SNR) scale demo. @ high P, T
 - Pure NH_3 combustion @ 75% 100% power
 - <u>Targeted outcome</u>: < 30ppm NOx** & >99.99% efficiency

**Note recent ETN recommendations for NOx reporting with hydrogen-containing fuels

Approved for public release. © 2024 RTX. 2

Approach & Progress ноw

- 4-year PoP: Oct. 2022 Sept. 2026 (currently at year-1.5)
- \$3.3M Federal DOE funding
- \$0.9M Customer funding RTRC & UConn (21.8% cost-share)

• Outcomes/Publications (to-date):

RTRC

RTX Technology

UCONN

- *Proceedings of the Combustion Institute* 40th CI Symposium paper in press for July 2024
- AIAA SciTech 2024 paper # AIAA-2024-2019 (DOI:10.2514/6.2024-2019)
- Combustion Institute Meetings 2023 US National & ESS Spring 2024 meeting papers

1st Technical Task EXPERIMENTS <u>L</u>ow-NOx <u>O</u>perable <u>A</u>mmonia-Combustor <u>D</u>evelopment (LOAD-Z)

- Fundamental NH₃ flame data relevant to turbines:
 - P, T >> ambient \rightarrow relevant to compressor exit conditions
 - strained & turbulent flames
 - <u>Targeted outcome</u>: expand published data w/ new, useful data (previously unreported)

- Predictive capability for NH₃ combustion & emissions
 - NO_X formation kinetics integral w/ NH₃ comb. kinetics
 - CFD of turb. NH₃ flames w/ NO_x & NH₃ slip (η_{COMB}) prediction
 - Targeted outcome: capability for GT combustor design
- Develop & test NH₃ gas-turbine combustor "@ scale"
 - Single-nozzle-rig (SNR) scale demo. @ high P, T
 - Pure NH₃ combustion @ 75% 100% power
 - <u>Targeted outcome</u>: < 30ppm NOx** & >99.99% efficiency

Lab-Scale Experiment #1: Counterflow Flame Rig | Laminar (2D)

- Stringent test of kinetic mechanisms, for comb. model development
- Canonical representation of turbulent "flamelet"

Oxidizer

Counterflow Experiments – Measure Flow Uniformity & Strain

Counterflow Experiments – Procedure for Measuring Extinction

<u>Sequence</u>:

RTRC

TX Technology

UCONN

- Establish stable, premixed NH₃ / air flames @ initial D_{SEPARATION} twin flames fixed in space ...for both
- At fixed P, ϕ : uniformly increase U_{JET} & observe D_{SEPARATION} \downarrow experiments
- & modeling - Quasi-steady approach to U_{EXT} at <u>extinction</u> $\rightarrow \frac{4U_{EXT}}{I} = a_{EXT_GLOBAL}$

Approved for public release. © 2024 RTX. /

Counterflow Experiments – Extinction Strain Rate vs. ϕ , p

Approved for public release. © 2024 RTX. 8

Counterflow Experiments – Pressure Effect on Extinction (3 ϕ 's)

Approved for public release. © 2024 RTX. 9

UConn Next Steps – T_{INLET}↑, PIV … Turb. Flame Speed Rig

Ongoing **Counterflow Flame** Rig Work:

- PIV measurements for local velocities \rightarrow S_L & a_{EXT}
- 300K to 500K T_{INLET} experiments \rightarrow a_{EXT} vs. T, P, ϕ

Q3- Fabricate Turb. Flame Speed Rig:

- Turbulent intensity range: 15–25%
 - 1. NH₃ Bunsen Burner Outlet
 - 2. Jet In Crossflow Port
 - 3. Sharp-Edged Orifice Plate
 - 4. H₂ Pilot Burner Plate
- NH PLIF for turbulent flame structure imaging
- High-speed PIV for turbulent flow-velocity characterization
- Turbulent intensity enhancement utilizing jet-in-crossflow & contraction section
 [e.g. Michigan*/Lund** Hi-Pilot/DRZ]
 *J.Driscoll, Univ. of Mich.; **M.Alden, Lund Univ.
 120.40

Approved for public release. © 2024 RTX. 10

Lab-Scale Experiment #2: High-P Flat-Flame Rig | Laminar (1D)

<u>**Relevance:**</u> – Scarce data on NH_3 flames & NOx formation at >>10-atm.

- Capability to evaluate staged (RQL or "RRQL") combustion of NH₃

<u>RTRC</u> configuration & capability:

💥 RT)

- 450 to >500+ K preheat capability (>25-atm w/new heater install.)
- 10 to >25-atm pressure vessel & feeds ... fuel, air, & N₂ chamber flow

NH₂ &

H, analyzers

Flat-Flame Exper. – Premixed "Adiabatic" Burner & Emissions

Flat-Flame Experiments – FTIR Measurements of NOx & NH₃

2nd Technical Task MODELING

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

- Fundamental NH₃ flame data relevant to turbines:
 - P, T >> ambient \rightarrow relevant to compressor exit conditions
 - strained & turbulent flames
 - <u>Targeted outcome</u>: expand published data w/ new, useful data (previously unreported)

- Predictive capability for NH₃ combustion & emissions
 - NO_X formation kinetics integral w/ NH₃ comb. kinetics \dots NO_X
 - CFD of turb. NH_3 flames w/ NO_{x} & NH_3 slip ($\eta_{\text{COMB}})$ prediction
 - Targeted outcome: capability for GT combustor design
- Develop & test NH₃ gas-turbine combustor "@ scale"
 - Single-nozzle-rig (SNR) scale demo. @ high P, T
 - Pure NH₃ combustion @ 75% 100% power
 - <u>Targeted outcome</u>: < 30ppm NOx** & >99.99% efficiency

FOCUS HERE:

Computational Methods

- · Cantera, open-source computational framework developed by Dave Goodwin at Caltech
- Models developed for flame speed, chemical reactor networks (CRN), and counterflow flames (premixed & non-premixed)
- Additional tools developed to perform sensitivity analysis, including feature sensitivity (e.g. extinction strain rate), reaction
 path, chemical mechanism reduction and other diagnostic tools

(iii) NH₃ Counterflow Flames: Premixed and Non-Premixed

Non-Premixed Counterflow Flames

Chemical Kinetic Mechanisms

Selected published, comprehensive N/H chemical mechanisms

Open-source computational framework developed by Dave Goodwin at Caltech
 Cantera

Glarborg et al. Mechanism (2018 & 2022 versions)

[Glarborg, Miller, Ruscic, Klippenstein: Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci. (2018) 31-68] [Glarborg: The $NH_3/NO_2/O_2$ system: Constraining key steps in ammonia ignition and N_2O formation, Combust. Flame, Vol. 257 (2023)]

Stagni et al. Mechanism (2020)

[Stagni, Cavallotti, Arunthanayothin, Song, Herbinet, Battin-Leclerc, Faravelli: React. Chem. Eng. 5 (2020) 696–711]

Powell & Papas et al. Mechanism- (2010 & 2011 versions) → RTRC

[Powell, Papas, Dreyer: Hydrogen- and C₁-C₃ Hydrocarbon-Nitrous Oxide Kinetics in Freely, Propagating and Burner Stabilized Flames, Shock Tubes, and Flow Reactors, Combust. Sci. Tech. 182 (2010) 252-283] [Powell, Papas, Dreyer: Flame Structure measurements of NO in Premixed Hydrogen-Nitrous Oxide Flames, Proc. Combust. Inst. 33 (2011) 1053-1062]

• Two "Powell" mechanisms differ by only 3 different rate expressions for amine radical reactions:

(1) $NH_2 + NO \leftrightarrow N_2 + H_2O$ (2) $NH_2 + NO \leftrightarrow NNH + OH$ (3) $NH_3 + NH_2 \leftrightarrow N_2H_3 + H_2$

RTRC Predictions vs. UConn Measurements (1/2)

NH₃/Air

RTRC Predictions vs. UConn Measurements (2/2)

Pressure (atm)

Approved for public release. © 2024 RTX.

NH₃/Air

Feature Sensitivity to Extinction Strain Rate

NH₃/Air Counterflow Flame

(1) $NH_2 + NO \leftrightarrow N_2 + H_2O$ (2) $NH_2 + NO \leftrightarrow NNH + OH$ (3) $NH_3 + NH_2 \leftrightarrow N_2H_3 + H_2$

💥 RTX

Approved for public release. © 2024 RTX.

constants

19

Counterflow NH₃ Flames w/<u>Heat Loss</u> → Impact & Lean Limit

C-shaped curve for counterflow premixed fuel-lean, ammonia-air flames showing **i.** adiabatic stretch-induced stretch rate $\kappa_{ext,ad}$ (solid line), **ii**. non-adiabatic stretch-induced stretch rates $\kappa_{ext,S}$ (dashed line), and **iii.** radiative-induced stretch rates $\kappa_{ext,R}$ (+ symbols).

Approved for public release. © 2024 RTX. 20

Modeling Activities & <u>Next Steps</u> Toward GT Design

Outcomes/Publications (to-date):

- Proceedings of the Combustion Institute 40th CI Symposium paper in press for July 2024
- AIAA SciTech 2024 paper # AIAA-2024-2019 (DOI:10.2514/6.2024-2019)
- Combustion Institute Meetings 2023 US National & ESS Spring 2024 meeting papers

Turbulent combustion regime for NH₃-fueled gas turbines:

- v' & ℓ_0 ~independent of fuel type (only aero dependent)
- $v_1 \downarrow w / NH_3$ fuel
- $\ell_1 \uparrow w/NH_3$ fuel
- shift by $\sim 5 10x$

rig measurements CFD modeling of NH₃-fueled gas turbine combustor:

- Challenges:
 - Efficient flamelet models uncertain (regime = ??)
 - NOx cannot be post-processed (integral to comb. rxns)
- For efficient GT design calculations, *possible approaches*:
 - Reduced NH₃/NOx kinetics w/transport, e.g. EDC**
 - Steady RANS turbulence model saves computational power for chemistry/transport

Approved for public release. © 2024 RTX.

3rd Technical Task GAS TURBINE COMBUSTOR DESIGN (PREP)

Low-NOx Operable Ammonia-Combustor Development (LOAD-Z)

- Fundamental NH₃ flame data relevant to turbines:
 - P, T >> ambient \rightarrow relevant to compressor exit conditions
 - strained & turbulent flames
 - <u>Targeted outcome</u>: expand published data w/ new, useful data (previously unreported)
- Predictive capability for NH₃ combustion & emissions
 - NO_X formation kinetics integral w/ NH₃ comb. kinetics
 - CFD of turb. NH₃ flames w/ NO_x & NH₃ slip (η_{COMB}) prediction
 - Targeted outcome: capability for GT combustor design

- Develop & test NH₃ gas-turbine combustor "@ scale"
 - Single-nozzle-rig (SNR) scale demo. @ high P, T
 - Pure NH_3 combustion @ 75% 100% power

<u>Targeted outcome</u>: < 30ppm NOx** & >99.99% efficiency

**Note recent ETN recommendations for NOx reporting with hydrogen-containing fuels

Chemical Reactor Network (CRN) Modeling

CRN Model Schematic for RQL Combustor

- Validation against available simulation data from Li et al., Fuel 355 (2024) 129509.
- Overall "theoretical" NOx levels <30 ppm for a RQL architecture appear feasible
- Established N/H mechanisms show wide variability for NOx

 $\phi_{R} = 1.25$

Total Residence time τ (ms)	τ _{PSR_I} (ms)	τ _{PFR_I} (ms)	τ _{PSR_II} (ms)	τ _{PFR_II} (ms)	Pressure (atm)	Inlet Temp. (K)	Outlet Temp. (K)	NOx* (ppm)
20	3	14	2	1	12	600	1850	38.5
20	3	14	2	1	30	700	1850	30.1
30	3	24	2	1	30	700	1850	22.9

Approved for public release. © 2024 RTX.

END

