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Project Objective
The overall objective of this project is to develop, test, and validate a general drag model for 
multiphase flows in assemblies of non-spherical particles by a physics-informed deep 
machine learning (PIDML) approach using artificial neural network (ANN). 
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CFD Software



Project Status
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Motivation

5
Alobaid, F., Almohammed, N., Farid, M.M., May, J., Rößger, P., Richter, A. and Epple, B., 2022. Progress in CFD simulations of 
fluidized beds for chemical and energy process engineering. Progress in Energy and Combustion Science, 91, p.100930.

1. Energy industry
• Gasifiers
• Combustion
• CO2 capture

2. Food industry
3. Chemical process
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1
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Motivation

• The drag coefficient primarily depends on
• Shape
• Reynold number

• The variations are highly non-linear
• Single correlation cannot cover all the 

particles
• Requires more sophisticated modelling 

such as Neural network

Cube Spheroid
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Haider & Levenspiel (1989) 𝐶𝐶𝐷𝐷 =
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Current State-of-the-Art
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Nearest Particles’ location

He & Tafti (2019)
BPNN RBFNN

Yan et al. (2019)

Existing drag models have large errors and narrow range of applications

RMSE



Data collection and Features identification (Task 2)
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Regular-shaped Particles (Total: 2277)

Irregular-shaped Particles (Total: 1894)

1. Reynold number (Re)
2. Sphericity (𝜓𝜓)
3. Fixed Crosswise Sphericity (𝜓𝜓⊥)
4. Fixed Lengthwise Sphericity (𝜓𝜓∥)
5. Aspect ratio (AR)

𝜓𝜓⊥ =
0.25𝜋𝜋𝐷𝐷2

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑐𝑐𝑃𝑃𝑅𝑅𝑃𝑃 𝑎𝑎𝑃𝑃𝑅𝑅𝑎𝑎 𝑝𝑝𝑅𝑅𝑃𝑃𝑝𝑝𝑅𝑅𝑝𝑝𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃 𝑃𝑃𝑡𝑅𝑅 𝑓𝑓𝑝𝑝𝑃𝑃𝑓𝑓

𝜓𝜓∥ =
0.25𝜋𝜋𝐷𝐷2
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𝜓𝜓 =
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 𝑆𝑆𝑝𝑝𝑃𝑃𝑓𝑓𝑎𝑎𝑐𝑐𝑅𝑅 𝑎𝑎𝑃𝑃𝑅𝑅𝑎𝑎 𝑃𝑃𝑓𝑓 𝑃𝑃𝑡𝑅𝑅 𝑝𝑝𝑎𝑎𝑃𝑃𝑃𝑃𝑝𝑝𝑐𝑐𝑝𝑝𝑅𝑅 (𝐴𝐴𝑠𝑠)

𝐴𝐴𝑅𝑅 =
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Settling Orientation Study

9Final torque on the body is zero or oscillate with a fixed amplitude and frequency
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Mixture of Experts (MoE) Architecture

Single-Model DNN

Haider & Levenspiel corr

Chien corr

Holzer & Sommerfeld corr

Yow et al. corr
Input features

𝑅𝑅𝑅𝑅,𝑅𝑅𝜌𝜌,𝜙𝜙,𝐴𝐴𝑅𝑅,𝜑𝜑∥,𝜑𝜑⊥

Gating 
network

Prediction

Assigns a 
confidence score for 

each regressor 
based on the range 

of input data 

Final predictions

Prediction

Prediction

Prediction

Prediction

Drag Coefficient Correlation-aided Deep Neural 
Network (DCC-DNN) (Task 3)

RMSE MRAE 𝑹𝑹𝟐𝟐

25.98 17.05 0.8569
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Presa-Reyes, M., Mahyawansi, P., Hu, B., McDaniel, D. and Chen, S.C., 2024. DCC-DNN: A deep neural network model to predict the drag 
coefficients of spherical and non-spherical particles aided by empirical correlations. Powder Technology, 435, p.119388.



Agenda
● Project Objective
● Project Status
● Technical Progress

● Background/Motivation for the Project
● Data collection
● Features considered
● Gated DNN modeling
● Integration with MFiX
● Fluidized bed study
● Volume fraction DNN 
● Fortran-PyTorch Library
● Fluidized bed Simulations
● Volume Fraction study for additional data 

● Conclusions
● Path Forward

11



Makeshift Integration with CFD (MFiX)

• ~11000 particles cost approximately 5 
seconds to complete the DEM loop.

• File writing takes place only once
• CFD of lab scale setup is practical
• Large scale can be time consuming

DEM Loop

Particles’ 
data

MFiX

Python 
in loop

Drag 
values

Common 
block

Usr_drag

1. MFiX is written on Fortran
2. Neural network model is written on 

Python

https://www.netl.doe.gov/sites/default/files/2020-
11/UCR_HBCU_OMI/Dirk%20VanEssendelft%20Presentation-
2020UCRHBCU_Kickoff_MFIXAI_Overview.pdf 12
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Experiments Simulations

Fluidized bed Simulation 
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Fluidized Bed Exp

PR-DNS

y = 15.734x2 + 0.5337x - 0.0008
R² = 1
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𝐶𝐶𝑑𝑑 = 𝐶𝐶𝑑𝑑0𝜙𝜙𝑣𝑣
𝑛𝑛

( 𝜙𝜙𝑣𝑣)

Volume fraction correlation

Single Particle settling Assemblies of Particles

Mahyawansi, P. and Lin, C.X., 2021, August. An Investigation of the Effects of Volume Fraction 
on Drag Coefficient of Non-Spherical Particles Using PR-DNS. In Fluids Engineering Division 
Summer Meeting (Vol. 85284, p. V001T02A024). American Society of Mechanical Engineers.



Fluidized bed Simulation 
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0.7 m/s 1.2 m/s 1.6 m/s 2.4 m/s
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Vollmari’s Fluidized bed Experiments
MFiX Simulations

Pressure drop history

Vollmari, K., Jasevičius, R. and Kruggel-Emden, H., 2016. Experimental and numerical study of fluidization and pressure 
drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 291, pp.506-521.
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Effect of Volume Fractions on Drag for Re = 500
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Modelling Volume Fraction Using Neural Network

Predicted vs. Actual scatter plot
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Deep Neural Network 1
(Mixture-of-Experts)

𝑅𝑅𝑅𝑅,𝐴𝐴𝑅𝑅,𝜓𝜓,𝑅𝑅𝜌𝜌,𝜓𝜓⊥,𝜓𝜓||

𝐶𝐶𝑑𝑑0 of a single particle

Deep Neural Network 2

𝐶𝐶𝑑𝑑0,𝜙𝜙𝑣𝑣,𝑅𝑅𝑅𝑅 𝑎𝑎𝑝𝑝𝑃𝑃 𝜓𝜓

𝐶𝐶𝑑𝑑 for group of particles



Final Integration with MFiX (Task 4)
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• Fortran PyTorch Lib (Ftorch) is developed by Cambridge 
ICCS (Institute of computing and climate science)

• We compiled this library for MFiX and developed it.
• The complex DNN model is transferred using the tracing 

command.

Methods Simulation time
MFiX-Python file 
sharing method for 
each particle.

~30 days

MFiX-Python file 
sharing method for 
all particle together.

~1 day

MFiX-FTorch < 2 hourDEM Loop

Particle data

MFiX

FTorch

Drag value

Common 
block

Usr_drag

DNN



Result (Task 5)
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Volume Fraction Single particle 
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Volume Fraction study for Additional data
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Physics Simulations Fluidized particle 
arrangement STL to CAD

Extract Volume 
fractionsMeshCFD Simulations

Extract Drag Force



Volume Fraction study for Additional data
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Physics Simulation

Blender Development Team. (2023). Blender (Version 3.6) [Computer software]. https://www.blender.org

>400 data points 

CAD

Mesh

Histogram Drag Coefficient
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Conclusions
• Drag force on non-spherical particles depends on shape factor and Reynold number.
• Gated DNN model gives better predictions compared to previous correlations. 
• DNN-assisted fluidized bed simulations shows excellent predictions in terms of pressure 

drop.
• The solid volume fraction effect are now accounted in the second level of DNN model.
• The volume fraction DNN have improved the prediction performance.
• Additional data for volume fraction is generated using PR-DNS of realistic arrangements of 

particles
• Physics simulations are effective in mimicking fluidized arrangement of particles. 
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Future Study
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Regular vs. Irregular Shaped Particles

32

Regular shaped particles:

• A particle of geometric 
parameters such as volume and 
surface area that can be 
mathematically determined

Irregular shaped particles:

• An arbitrary random particle 
whose geometric parameters 
cannot be precisely calculated

Regular-shaped 
Particles

Irregular-shaped 
Particles1

1Dioguardi, F., D. Mele, and P. Dellino. "A new one‐equation model of fluid drag for irregularly shaped 
particles valid over a wide range of Reynolds number." Journal of Geophysical Research: Solid Earth 
123, no. 1 (2018): 144-156.
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