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▪ Multi-scale highly integrated energy systems
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▪ Gas separation processes are crucial parts of next-generation energy 
and environmental technologies

▪ Adsorption-based separation technologies, such as Pressure Swing 
Adsorption (PSA), have been intensively investigated for energy-
efficiency, low environmental impact etc.

Metz, B., Davidson, O., De Coninck, H.C., Loos, M. and Meyer, L., 2005. 
IPCC special report on carbon dioxide capture and storage. 
Cambridge: Cambridge University Press.

Angelini, P., Armstrong, T., Counce, R., Griffith, W., Klasson, 
T.L., Muralidharan, G., Narula, C., Sikka, V., Closset, G., 
Keller, G. and Watson, J., 2005. Materials for separation 
technologies: Energy and emission reduction opportunities. 
DOE, EERE Office, Washington, DC, 103.

Adsorption-Based Gas Separation



▪ Pressure difference drives the adsorption

▪ Continuous adsorption gas separation relies on cyclic operations

▪ Model columns as 1D dynamic packed-beds

– No radial gradients → 1D phenomena

– Rigid adsorbents → fixed solid phase

– Equilibrium-controlled adsorption → isotherm models

https://www.linde-engineering.com/en/images/
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▪ Microporous materials (i.e., MOFs, Zeolites) are promising 
adsorbents for adsorption-based gas separation processes

▪ Vast design space of microporous materials calls for systematic 
computational search method

Moosavi et. al. 2016

Weitkamp et.al. 2000

Database
Number of 

entries
Origin

CoRE-MOF 14,000+ Experiments

hMOF 137,953 Simulations

ToBaCCo 13,512 Simulations

CSD-MOF 96,000+ Experiments

IZA 252 Experiments

hZeo 2.6M Simulations

CoRE-COF 449 Experiments

hCOF 69,840 Simulations

CURATED COFs 482 Experiments

247 trillion MOFs (Lee et. al. 2021)

Microporous Materials as Adsorbents



▪ Approach 1 : Material screening through process simulation
– Screening through all the candidates in a database and filtering them 

down via certain criteria

– Limited search space for MOFs

– Requires a time-consuming process simulation for every MOF to 
evaluate

Design of MOFs for PSA Separations



▪ Approach 2 : Optimize material performance characteristics
– Optimizing adsorption isotherm parameters (𝑣) while simulating 

process

– Broadest search space, beyond what exists in a structure database

– Can utilize established numerical optimization solvers for equation-
oriented and/or black-box models

– Does not provide structural information for MOF

• Optimal adsorption isotherm might not be realizable

Design of MOFs for PSA Separations



▪ Approach 3 : Embedding material surrogate in process model
– Optimizing MOF descriptors (𝑑) while simulating process

– Wide search space, beyond what exists in a structure database, but with 
explicit guarantees about structural self-consistency

– Can utilize established numerical optimization solvers for equation-
oriented and/or black-box models

Design of MOFs for PSA Separations
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Proposed co-
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▪ Goal: Push Pareto front of material-process decision fidelity

Yin, X., & Gounaris, C. E. (2022). Computational discovery of Metal–Organic Frameworks for sustainable energy 
systems: Open challenges. Computers & Chemical Engineering, 167, 108022. 
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• Isotherm model parameter prediction via surrogate model (ALAMO):

N2

(SSL)
(3 params)

CO2

(DSL)
(5 params)

• ML model regression quality (CoRE-MOF 2014 database):

CO2 N2

Simulated and ML-predicted 
loading parity plots

Isotherm Model Predictive Performance

Cumulative distribution of 
regression R2 scores

Simulated and ML-predicted 
loading parity plots

Cumulative distribution of 
regression R2 scores



• Nitrogen adsorption (SSL)

Algebraic Surrogate Model

Yin, X., et al., Inverse Design of  Metal-Organic Frameworks for Adsorption Processes: Learning Surrogate Models of  Isotherm Parameters. Forthcoming, 2024.



• PSA process simulation using open-source code (Yancy-Caballero 
et al., 2020) to evaluate process performance of material with 
given isotherm behavior
• MATLAB implementation
• Input:

• Sorbent isotherm parameters (𝑣)
• Process parameters (𝑝)
• Process configuration, feed

• 5-step Skarstrom cycle, ~5kmol/sec 15/85% (CO2/N2) stream

• Output: 
• Four process performance metrics

Evaluation of MOF Performance via 
Process Simulation

Yancy-Caballero, D., et al., Process-level modelling and optimization to evaluate metal–organic frameworks for post-combustion capture of  CO2. Molecular Systems 

Design & Engineering, 2020. 5(7): p. 1205-1218



PSA Process Simulator

Isotherm Surrogate

Co-Optimization of MOF Structure and 
Process Parameters

Isotherm Trust Region

• PSA process simulation using open-source code (Yancy-Caballero 
et al., 2020) to evaluate process performance of material with 
given isotherm behavior

• Our own equation-oriented surrogate to explicitly link MOF 
structure (descriptors 𝑑) with isotherm model



• Derivative-Free Optimization (DFO) tool NOMAD (Audet et al., 
2022) to solve formulation
• Mesh Adaptive Direct Search (MADS) algorithm
• Python interface

Solving via Derivative-Free Optimizer

Audet, C., et al., NOMAD version 4: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 2022. 48(3), 35:1-

35:22.

Nomad 4 User Guide — Nomad 4 documentation. https://nomad-4-user-guide.readthedocs.io/en/latest/index.html 



• Productivity objective gradually 
improved through the DFO iterations 

• Converged at approximately 5500 
iterations (~1600 feasible solutions)
• ~22 hrs CPU time

• Improvement compared to the 
baseline MOF structure in all process 
performance metrics

MOF
Productivity
(objective)

Energy 
Requirement

Purity Recovery

UTSA-16
(Baseline)

0.37 x 10-3 134 0.90 0.90

Optimized 0.73 x 10-3 131 0.96 0.90

Material Optimization Results
(for fixed process parameters)

—preliminary results—



▪ Since the MOF was optimized based on a “predicted” isotherm (surrogate 
model) as opposed to its “true” isotherm, is it robustly good?

▪ Step 1: Identify isotherm parameters that more strongly impact metrics

– Perturb isotherm parameters one at a time, and re-evaluate optimal MOF’s 
process performance

▪ A total of 4 parameters were found to be critical:

– nitrogen max capacity (𝑀𝑁2) and energy of adsorption (Δ𝐻𝑁2) 

– CO2 max capacity for site #2 (𝑀2,𝐶𝑂2) and energy of adsorption (Δ𝐻𝐶𝑂2)

Solution Robustness to Prediction 
Errors from Surrogate Model

—preliminary results—



▪ Since the MOF was optimized based on a “predicted” isotherm (surrogate 
model) as opposed to its “true” isotherm, is it robustly good?

▪ Step 2: Process performance spread across multiple isotherm samples

– Sample 5000 isotherm perturbations (4d-ellipsoid), and re-evaluate optimal 
MOF’s process performance

▪ This analysis suggests that any potential errors in the surrogate model 
predictions do not noticeably affect the process performance of the 
optimal MOF

Solution Robustness to Prediction 
Errors from Surrogate Model

Red line: 
   Nominal performance
Green distribution:   
   Perturbed performance

—preliminary results—



Perf. Metric Value

Purity 0.96

Recovery 0.90

Productivity
(objective)

0.73

Energy 
Requirement

131

Co-Optimizing Process and Material 

Baseline MOF
Baseline process parameters

Perf. Metric Value

Purity 0.90

Recovery 0.90

Productivity
(objective)

0.37

Energy 
Requirement

134

Optimized MOF
Baseline process parameters

~5500 iter., ~22hr

Optimized MOF
Optimized process parameters

Perf. Metric Value

Purity 0.92

Recovery 0.99

Productivity
(objective)

1.01

Energy 
Requirement

193

~750 iter., ~12hr

~9500 iter.
~29hr

Perf. Metric Value

Purity 0.93

Recovery 0.98

Productivity
(objective)

2.01

Energy 
Requirement

190

Baseline MOF
Optimized process parameters

Perf. Metric Value

Purity 0.93

Recovery 0.90

Productivity
(objective)

0.96

Energy 
Requirement

214

Perf. Metric Value

Purity 0.90

Recovery 0.99

Productivity
(objective)

0.52

Energy 
Requirement

205

~1000 iter., ~4hr

~2500 iter., ~17hr

—preliminary results—



Perf. Metric Value

Purity 0.96

Recovery 0.90

Productivity
(objective)

0.73

Energy 
Requirement

131

Co-Optimizing Process and Material 

Baseline MOF
Baseline process parameters

Perf. Metric Value

Purity 0.90

Recovery 0.90

Productivity
(objective)

0.37

Energy 
Requirement

134

Optimized MOF
Baseline process parameters

~5500 iter., ~22hr

Optimized MOF
Optimized process parameters

Perf. Metric Value

Purity 0.94

Recovery 0.97

Productivity
(objective)

0.97

Energy 
Requirement

150

~1400 iter., ~14hr

~5100 iter.
~24hr

Perf. Metric Value

Purity 0.91

Recovery 0.94

Productivity
(objective)

1.62

Energy 
Requirement

150

Baseline MOF
Optimized process parameters

Perf. Metric Value

Purity 0.95

Recovery 0.90

Productivity
(objective)

0.87

Energy 
Requirement

148

Perf. Metric Value

Purity 0.90

Recovery 0.92

Productivity
(objective)

0.48

Energy 
Requirement

150

~2000 iter., ~8hr

~2900 iter., ~11hr

Restrict energy use/increase:

—preliminary results—



Conclusions
▪ Opportunities exist in incorporating materials design with process 

design/operation in a co-optimization framework

▪ A PSA process with MOF adsorbents co-optimization model was 
formulated and solved with the NOMAD DFO tool

– Optimizable MOF adsorption isotherm models were learned via a 
custom-built ML-assisted surrogate learning workflow

– An open-source PSA simulator was utilized as a black-box process 
model, allowing us to optimize productivity subject to purity, recovery, 
and energy requirement constraints
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