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Motivation

= Multi-scale highly integrated energy systems

Time scale %m B
Process design and T et
year rocess design and/or ﬂ e }.
optimization given materials ] ek _r'
week design & properties o< RefEE —\y Supply chain,
day . Power grid

Plant design,

control and
hour .
operations
i Materials
min . e s ) i
identification, x. Unit operations,
S design process
intensification
ms
ns Molecule Materials design and/or selection
os i design given process conditions

pm nm pum mm m km Length scale
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v Motivation

= Multi-scale highly integrated energy systems

Time scale W@ e
year Process-Materials Ry X
| . ° . LA ) - W' \
Co-Optimization o wf It 1
week T ReEE “ i  Supply chain,
“h Power grid
day Plant design,
control and
hour .
- operations
, Materials 2
min identification, | ™. Unit operations,
S . design ... process
intensification
ms
ns : ¥ Molecule - Obtain optimal material design and
DS , " design corresponding process design simultaneously
pm nm pum mm m km Length scale

Opportunities exist to optimize
materials and processes simultaneously
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= @Gas separation processes are crucial parts of next-generation energy

and environmental technologies

= Adsorption-based separation technologies, such as Pressure Swing
Adsorption (PSA), have been intensively investigated for energy-
efficiency, low environmental impact etc.

Coal

Gas Power & Heat

Biomass
Air

in/
Coal Ai' A,

]

Btormss’ ‘/‘ \ I

Pre combustion |Gasiﬁcaﬁon '— Reformer
+CO, Sep.

Gas'oi #_

Coal

N,O,

»

Oxyfuel Gas ﬂ Power & Heat
Biomass .
O,
Y N,
Air ir S P tion
3
AirlO,
Coal co,
Industrial processes Gas wsssssmmsnl] Process +CO, Sep.
Biomass ‘
Raw material Gas, Amrﬁonia, Steel

Metz, B., Davidson, O., De Coninck, H.C., Loos, M. and Meyer, L., 2005.
IPCC special report on carbon dioxide capture and storage.
Cambridge: Cambridge University Press.

Relative Energy Use by Various Separation Technologies

Relaluve energy consumpuon

Angelini, P., Armstrong, T., Counce, R., Griffith, W., Klasson,
T.L., Muralidharan, G., Narula, C., Sikka, V., Closset, G.,
Keller, G. and Watson, J., 2005. Materials for separation
technologies: Energy and emission reduction opportunities.
DOE, EERE Office, Washington, DC, 103.
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" Pressure difference drives the adsorption
= Continuous adsorption gas separation relies on cyclic operations
= Model columns as 1D dynamic packed-beds

— No radial gradients = 1D phenomena

— Rigid adsorbents - fixed solid phase
— Equilibrium-controlled adsorption = isotherm models

MOF surrogate
I

. Step Repeated Cyclically
1 H ]
A . i-- Adsorption Heavy Reflux Evacuation LightReflux  Light Product | n lOde
= \ Repressurization
) - N N "
. A
! .- 1
& ; e
i
- -
S, I
\ e A
\ tap g ar
) A A
)
\ it
' P
N \

Loading

Workipg i Gas phase
Capacity ! yi(t,2) F(¢, 2)

________________ i P(t,z) T(t, z)
=TS

P ressure https://www.linde-engineering.com/en/images/

5-bed 5-step cycle Column conceptual model
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= Microporous materials (i.e., MOFs, Zeolites) are promising
adsorbents for adsorption-based gas separation processes

= \ast design space of microporous materials calls for systematic
computational search method

—
CoRE-MOF 14,000+ Experiments

ST s hMOF 137,953 Simulations

weitiamo et 20\(‘)0 - _,Dﬂﬂﬂﬂﬁ ToBaCCo 13,512 Simulations
. 1 CSD-MOF 96,000+ Experiments

' IZA 252 Experiments

hZeo 2.6M Simulations

i CoRE-COF 449 Experiments

. hCOF 69,840 Simulations

CURATED COFs 482 Experiments

________________________________________________

Moosavi et. al. 2016 247 trillion MOFs (Lee et. al. 2021)
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= Approach 1 : Material screening through process simulation

— Screening through all the candidates in a database and filtering them
down via certain criteria

— Limited search space for MOFs

— Requires a time-consuming process simulation for every MOF to
evaluate

\ooou

|
1
I
I
I
I
I
I
I
F

iltering criteria
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= Approach 2 : Optimize material performance characteristics

Optimizing adsorption isotherm parameters (v) while simulating
process

Broadest search space, beyond what exists in a structure database

Can utilize established numerical optimization solvers for equation-
oriented and/or black-box models

Does not provide structural information for MOF
* Optimal adsorption isotherm might not be realizable

max Process Performance

v

s.t. Process Performance = Adsorption Process(v, p)

veV



Carnegie
Mellon

. . N NATIONAL C PD
University Design of MOFs for PSA Separations 1L EE%S%E%S%Y%R

= Approach 3 : Embedding material surrogate in process model
— Optimizing MOF descriptors (d) while simulating process

— Wide search space, beyond what exists in a structure database, but with
explicit guarantees about structural self-consistency

— Can utilize established numerical optimization solvers for equation-
oriented and/or black-box models

max Process Performance

Materials Model

s.t. v =

Adsorption Properties(d)

Process Performance = Adsorption Process(v, p)

de D

Descriptor Domain
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" @Goal: Push Pareto front of material-process decision fidelity

Material A Existing approaches
decisions ® Proposed approach
Building block- _ )
Guided-sampling
level : Proposed co-
With process L.
' optimization
simulator roach
Descriptor-level e PP
Process
Property-level optimization with
properties Vartables
Candidate choice
Process (Simplified) Process Process
metrics-based  simulation-based  optimization for
None screening screening (few) candidates
None Black/Grey box EO model Superstructure  Process

decisions
Yin, X., & Gounaris, C. E. (2022). Computational discovery of Metal-Organic Frameworks for sustainable energy

systems: Open challenges. Computers & Chemical Engineering, 167, 108022.
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MOF Structures
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* ML model regression quality (CoRE-MOF 2014 database):
Lo _ 10 = 1.0 15
= N —=
081 2 d,-.;-;&:'é","\'i‘ 0.8
".‘r,:\&:‘:\‘alj) 6.
547 § .“-',!5‘(‘:5; c 0.6 §
g 3 57 ,ag’féfs”j £ 3
£ 04 5 s 3 g
021 ‘3.%@,7 021
&® ®
0.0 . - . . J 0 - T T T T 0 . .
0.0 02 04 06 08 Lo 0 2 4 6 8 10 0'00.0 0.2 0.4 06 0.8 1.0 0 5 10 15

R? score

Cumulative distribution of
regression R? scores

Qregression

Simulated and ML-predicted
loading parity plots

RZ score
Cumulative distribution of
regression R? scores

Qregression
Simulated and ML-predicted
loading parity plots

* [sotherm model parameter prediction via surrogate model (ALAMO):

N,
(SSL)
(3 params)

(DSL)

(5 params) Kj.co,

= K],C02 exp(

CO Ngo, = i[ M;,

", = My, T ¥ Ky, P
2
AH

Ky, = Ky, EXP(R—;YZ)

€921+ Kjco, P

Ky, P

2

Kjco, P ]

AHCOZ

)
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Ky, P
* Nitrogen adsorption (SSL) n""“:IIEHK P
KNz =exp£‘€$}

M = 0.501198 x void fraction 4+ 0.180014 x density + 0.564126 X pssd —
2.119656 x psd;—3.070411x psd, 4+0.282018 x pssd®—0.101757¢ % xsurface area®+
1.787132Xpsd§—5.230239><v0id fraction x pssd+0.239656e 2 x void fraction x
surface area—0.112717e72 x void fraction x pssd x surface area+15.675051 x
void fraction/density e

K° = 0.435066¢ 3 x void fraction—0.208241e~*x M —0.163226e 3 x psd,+
0.181835e~* x led — 0.458682¢~* x density — 0.674073e 2 x void fraction® +
0.566632¢ % x M? +0.195776e > x psd; — 0.128304e° x led? 4 0.939266e 3 x
void fraction®+0.279167¢~*x void fraction xled+0.117142e 4 xled/M  +ek

AH = 36310662.568495x K°+21849.163143 x void fraction—381.468363 x
M+19649.357880 x density —407.611611 x psd,+7478.069611 x void fraction®+
88.653985 x M? — 8326.098874 x density? — 51381.053022 x void fraction® —
2.573389 x M? + 1055.017163 x density” — 40247.766670 +cam

Yin, X., et al., Inverse Design of Metal-Organic Frameworks for Adsorption Processes: Learning Surrogate Models of Isotherm Parameters. Forthcoming, 2024.
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e PSA process simulation using open-source code (Yancy-Caballero
et al., 2020) to evaluate process performance of material with
given isotherm behavior

e MATLAB implementation

* |nput:
e Sorbent isotherm parameters (v)
* Process parameters (p)

* Process configuration, feed
* 5-step Skarstrom cycle, ~5kmol/sec 15/85% (CO,/N,) stream

* OQOutput:
* Four process performance metrics

Moles of CO, in the product

. . [mol CO, Moles of CO, in the product
x100% Productivity

Purity = Total moles in the product kgs | Mass of adsorbent x cycle time
Moles of CO, in th duct Energy required for all steps
I oles o 2 in the product Energy Req. kWh | gy req ; P
Moles of CO, fed into the cycle ton CO,| mass of CO, collected in the product per cycle

Yancy-Caballero, D., et al., Process-level modelling and optimization to evaluate metal—organic frameworks for post-combustion capture of COZ2. Molecular Systems
Design & Engineering, 2020. 5(7): p. 1205-1218
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e PSA process simulation using open-source code (Yancy-Caballero
et al., 2020) to evaluate process performance of material with
given isotherm behavior

* Our own equation-oriented surrogate to explicitly link MOF
structure (descriptors d) with isotherm model

max Productivity
pyd Isotherm Surrogate

s.t. v = Adsorption Properties(d)

PSA Process Simulator

Purity, Recovery, Productivity, Energy Requirement =|Adsorption Process(v, p)

Recovery > 0.9
Purity > 0.9
peP deD vdgT

Isotherm Trust Region
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* Derivative-Free Optimization (DFO) tool NOMAD (Audet et al.,
2022) to solve formulation
 Mesh Adaptive Direct Search (MADS) algorithm
* Python interface

# Nomad 4

# / Nomad 4 User Guide © Edit on GitHub

Nomad 4 User Guide

This user guide is specific to NOMAD 4.
NOMAD 3 is still available. It will be replaced by NOMAD 4 in the future.

Get NOMAD 3 and 4 at https:/www.gerad.ca/nomad/.

NOMAD is a blackbox optimization software. A general presentation of NOMAD is given in
Introduction.

New users of NOMAD should refer to

« Installation
« Getting started

Using NOMAD
« Starting from NOMAD usage, all users can find ways to tailor problem definition, algorithmic

settings and software output.
« Refer to Advanced functionalities and Tricks of the trade for specific problem solving.

Nomad 4 User Guide — Nomad 4 documentation. https://nomad-4-user-guide.readthedocs.io/en/latest/index.html

Audet, C., et al., NOMAD version 4: Nonlinear optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 2022. 48(3), 35:1-
35:22.
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* Productivity objective gradually

+« feasible points
improved through the DFO iterations ~ °*] bestm'“t'ms;fa’r/""—_

0.0006 - '
 Converged at approximately 5500 g
iterations (~1600 feasible solutions) £ | ‘ﬁ’ '
e ~22 hrs CPU time H g
 Improvement compared to the :-.:'

baseline MOF structure in all process %7 it
performance metrics

T T T T T T
0 1000 2000 3000 4000 5000

Number of iteration

Productivity Energy
“ (objective)
UTSA-16 e
(Baseline)

Optimized 0.73x 103 131 0.96 0.90

—preliminary results—
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=  Since the MOF was optimized based on a “predicted” isotherm (surrogate
model) as opposed to its “true” isotherm, is it robustly good?

Step 1: Identify isotherm parameters that more strongly impact metrics

— Perturb isotherm parameters one at a time, and re-evaluate optimal MOF’s
process performance

= A total of 4 parameters were found to be critical:
— nitrogen max capacity (My,) and energy of adsorption (AHy,)

— CO, max capacity for site #2 (M ¢¢,) and energy of adsorption (AH¢o,)

—preliminary results—
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Errors from Surrogate Model e

=  Since the MOF was optimized based on a “predicted” isotherm (surrogate
model) as opposed to its “true” isotherm, is it robustly good?
=  Step 2: Process performance spread across multiple isotherm samples

— Sample 5000 isotherm perturbations (4d-ellipsoid), and re-evaluate optimal
MOF’s process performance

Purity Recovery
4000 + 2000 A
3000 1500 A
2000 ~ 1000 A
1000 500 A
0 T T T 0 T T T
0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Productivity Energy requirement
2000 ~
4000 - .
1500 Red line:
T 3000 A .
Nominal performance
1000 B . . .
2000 Green distribution:
500 7 1000 4 Perturbed performance
0 - 0 - T T T T T
0.0000 0.0002 0.0004 0.0006 200 400 600 800 1000 1200

= This analysis suggests that any potential errors in the surrogate model
predictions do not noticeably affect the process performance of the
optimal MOF

—preliminary results—
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Purity 0.90 Purity ﬁ 0.96
Recovery 0.90 Recovery :> 0.90
Productivity mol CO, Productivity
(objective) LY/ [“0 " ks ] (objective) ﬁ E
Energy [ KW h ] Energy
Requirement 132 |fon co; Requirement g' 2

Baseline MOF ~5500 iter., ~22hr Optimized MOF

Baseline process parameters Baseline process parameters
~9500 iter.
~1000 iter., ~4hr ~29hr ~750 iter., ~12hr
v v
Baseline MOF ~2500 iter., ~17hr Optimized MOF
Optimized process parameters Optimized process parameters

Purity :> 0.90 Purity ﬁ 0.93 Purity ﬂ 0.93 Purity ‘ 0.92

Recovery ﬂ‘ 0.99 Recovery ‘ 0.90 Recovery ﬁ 0.98 Recovery ‘G‘ 0.99

Productivity Productivity Productivity Productivity
(objective) hr: (objective) ﬁ s (objective) ﬁ At (objective) 2ol

Energy t 205 Energy t 214 Energy t 190 Energy t 193
Requirement Requirement Requirement Requirement

—preliminary results—
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mt:[x Productivity
Purity 0.90 2 purity ﬁ o

s.t. v = Adsorption Properties(d)

Recovery 0.90 Purity, Recovery, Productivity, Energy Req. = Adsorption Process(v, p) Recovery © 0.90
Recovery > 0.9
Productivity 1 CO - Productivity
o 0.37 |, o0 2olCO2 Purity > 0.9 o ﬂ‘ 0.73
(objective) [“0 kg ’ (objective)

Energy Req. < 150
Energy 134 [ KW h ] peP deD veT Energy g' 131

Requirement ton CO2 Requirement
Baseline MOF ~5500 iter., ~22hr Optimized MOF
Baseline process parameters Baseline process parameters

~5100 iter.

~24hr

~2000 iter., ~8hr ~1400 iter., ~14hr

v v
Baseline MOF ~2900 iter., ~11hr Optimized MOF
Optimized process parameters Optimized process parameters

Purity :> 0.90 Purity ﬁ 0.95 Purity ﬂ 0.91 Purity ‘ 0.94

Recovery ﬂ‘ 0.92 Recovery ‘ 0.90 Recovery ﬁ 0.94 Recovery ‘G‘ 0.97

Productivity

Productivity Productivity Productivity

(objective) U (objective) ﬁ S/ (objective) Lu2 (objective) e
Energy t 150 Energy U, 148 Energy t 150 Energy t 150
Requirement Requirement Requirement Requirement

—preliminary results—
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Conclusions

= QOpportunities exist in incorporating materials design with process
design/operation in a co-optimization framework

= A PSA process with MOF adsorbents co-optimization model was
formulated and solved with the NOMAD DFO tool

— Optimizable MOF adsorption isotherm models were learned via a
custom-built ML-assisted surrogate learning workflow

— An open-source PSA simulator was utilized as a black-box process
model, allowing us to optimize productivity subject to purity, recovery,
and energy requirement constraints

Acknowledgment: "This material is based upon work supported by the Department of Energy under
Award Number DE-FE0032069."
Disclaimer: "This report was prepared as an account of work sponsored by an agency of the

N NATIONAL United States Government. Neither the United States Government nor any agency thereof, nor
TL TECHNOLOGY any of their employees, makes any warranty, express or implied, or assumes any legal liability or
LABORATORY responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof."
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