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Introduction

Importance of Research

Particle hydrodynamic forces exerted on particles play a pivotal role in 
particulate flow simulation packages 

Many particles in the real world are non-spherical, with ellipsoids and 
spherocylinders being among the most common shapes. 

Developing a more precise model tailored to non-spherical particles 
could improve the accuracy of particulate flow simulations.

The applications span a wide array of fields, from biological systems to 
industrial processes. 



Introduction

Technical background
• Research on non-spherical particle drag is scarce in the literature. 
• Existing particulate simulation packages operate under the assumption that particles are 

spherical, employing spherical drag force models.
• Drag could differ significantly between spherical particles and non-spherical particles



Descriptions of a Non-spherical Particle

The “Size” of non-spherical particles  

 The volume equivalent diameter:

 The longest dimension of the particle, LL.

 The shortest dimension of the particle, LS.

 An intermediate dimension of the particle, LI, typically defined as (LLLS)0.5.

 The diameter of the smallest sphere that circumscribes the particle, dc.

 The diameter of the largest sphere that may be enclosed by the particle, de.

.         (5)



Descriptions of A Non-Spherical Particle

The “Shape” of  a non-spherical particle

 The sphericity: defined as the ratio of the surface area of the sphere with equivalent volume to the 
actual surface area of the particle

 Corey shape factor: primarily used for ellipsoids with three semi-axes a>b>c:

 Circularity (roundness):  the ratio of the area equivalent diameter to the projected perimeter diameter  
of the particle in the direction of motion

 Aspect ratio or elongation, EL : defined as the ratio of its longest to its shortest dimension, LL/LS

 The flatness of a particle, FL : defined as the ratio LS/LI. The size of the dimension LI is between the 
longest and the shortest dimensions: LL>LI>LS.



Drag Correlations of A Single Non-Spherical Particle

Spherical particle

      Schiller and Nauman    Clift and Gauvin  

Non-spherical particle 



Non-Spherical Particles Implemented in the DNS Code

Particle Shape

(r is radius, h is height)

𝑑𝑑𝑉𝑉 𝐴𝐴𝑃𝑃 dA 𝐿𝐿𝐿𝐿 𝐿𝐿𝐼𝐼 𝐿𝐿𝑆𝑆 Φ

Sphere (r= a) 2𝑎𝑎 4𝜋𝜋𝑎𝑎2 2𝑎𝑎 2𝑎𝑎 2𝑎𝑎 2𝑎𝑎 1

Cube (side length a) 1.241𝑎𝑎 6𝑎𝑎2 6/𝜋𝜋𝑎𝑎 3𝑎𝑎 2𝑎𝑎 𝑎𝑎 0.806

Disk (r=a, h=0.2a) 1.063𝑎𝑎 2.4𝜋𝜋𝑎𝑎2 1.55𝑎𝑎 2.01𝑎𝑎 0.2𝑎𝑎 0.2𝑎𝑎 0.471

Cylinder (r=a, h=4a) 2.884𝑎𝑎 10𝜋𝜋𝑎𝑎2 3.31𝑎𝑎 4.47𝑎𝑎 4𝑎𝑎 4𝑎𝑎 0.832

Spherocylinder (r=a, h=8a) 3.530𝑎𝑎 16𝜋𝜋𝑎𝑎2 4𝑎𝑎 8𝑎𝑎 2𝑎𝑎 2𝑎𝑎 0.779

Prolate (a=b, c=2a) 2.520𝑎𝑎 6.831𝜋𝜋𝑎𝑎2 2.614𝑎𝑎 4𝑎𝑎 2𝑎𝑎 2𝑎𝑎 0.930

Oblate (a=b, c=0.5a) 1.587𝑎𝑎 2.763𝜋𝜋𝑎𝑎2 1.662𝑎𝑎 2𝑎𝑎 2𝑎𝑎 𝑎𝑎 0.912

Cone (r=a, h=2a) 1.587𝑎𝑎 3.236𝜋𝜋𝑎𝑎2 1.799𝑎𝑎 2.236𝑎𝑎 2𝑎𝑎 2𝑎𝑎 0.778



Correlation of Drag Coefficients of A Spherocylinder

Uniform flow over a Spherocylinder
• Three Dimensionless Parameters - Inputs
− Reynolds Number: 𝑅𝑅𝑅𝑅 = 𝜌𝜌𝜌𝜌𝐷𝐷𝑒𝑒

𝜇𝜇
 

− Aspect ratio: 𝛽𝛽 = 𝑎𝑎+𝑏𝑏
𝑎𝑎

 

− Incident angle: 𝜃𝜃

• Three Coefficients - Outputs
− Drag coefficient: 𝐶𝐶𝐷𝐷
− Lift coefficient: 𝐶𝐶𝐿𝐿 

− Torque coefficient: 𝐶𝐶𝑇𝑇



Direct Numerical Simulation (DNS) Method

Simulation domain size and grid resolutions study

Re Grid Resolution (𝐷𝐷/ℎ) Domain Size (𝐿𝐿/𝐷𝐷)

0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 5 10 18 × 18 × 18

5 < 𝑅𝑅𝑅𝑅 ≤ 200 20 9 × 9 × 20

200 < 𝑅𝑅𝑅𝑅 30 8 × 8 × 24

Affect of the domain size to the drag Selection of grid resolution and grid size in the 
simulations



Direct Numerical Simulation (DNS) Method

Validations

Drag Coefficient of a Sphere

Re=10 𝑪𝑪𝑫𝑫 𝑪𝑪𝑳𝑳 𝑪𝑪𝑻𝑻

Zastawny et al. 5.00 0.85 1.2

Ouchene 6.60 1.20 1.50

Present 6.92 1.23 1.57

Spherocylinder at 𝜷𝜷 = 𝟔𝟔 and 𝜽𝜽 = 𝝅𝝅/𝟑𝟑

Re=300 𝑪𝑪𝑫𝑫 𝑪𝑪𝑳𝑳 𝑪𝑪𝑻𝑻

Zastawny et al. 1.25 0.56 0.6

Ouchene 1.49 0.56 0.84

Present 1.40 0.53 0.82



Correlation of Drag Coefficients of A Spherocylinder

Correlation of Drag Coefficient 

– Aspect Ratio: 1 ≤ 𝛽𝛽 ≤ 6, 
– Orientation Angle: 00 ≤ 𝜃𝜃 ≤ 900

– Reynolds Number: 0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 300



Correlation of Drag Coefficients of A Spherocylinder

Results of General Drag Correlation* 

Comparisons of Correlations
(Drag coefficient at 𝜽𝜽 = 𝟎𝟎𝒐𝒐 and 𝟗𝟗𝟗𝟗𝟎𝟎for 𝜷𝜷 = 𝟒𝟒)

Drag coefficients for a spherocylinder in 
terms of (𝜃𝜃, 𝛽𝛽, Re)



Correlation of Drag Coefficients of An Ellipsoid

Drag coefficient of an oblate 

– Aspect Ratio: 0.1 ≤ 𝛽𝛽 < 1, 
– Orientation Angle: 00 ≤ 𝜃𝜃 ≤ 900

– Reynolds Number: 0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 300



Correlation of Drag Coefficients of An Ellipsoid

Drag coefficient of a prolate

– Aspect Ratio: 1 ≤ 𝛽𝛽 ≤ 3, 
– Orientation Angle: 00 ≤ 𝜃𝜃 ≤ 900

– Reynolds Number: 0.1 ≤ 𝑅𝑅𝑅𝑅 ≤ 300
 



Correlations of Drag Coefficients

Limitations of Correlations

1.These methods are primarily designed for analyzing relationships between two variables, 
making it challenging to extend them to handle three or more variables effectively.

2.Correlations are highly sensitive to outliers in the data, often resulting in skewed and 
inaccurate results.

3.Risk of overfitting, where the model fits the training data too closely and performs poorly 
when applied to new, unseen data.

4. Unable to develop accurate correlations for lift and torque coefficients due to the intricate 
nature of the particle shapes a



Neural Network Models for Non-Spherical Particles

Completed Master Thesis:

1. Joshua Conner (2022), “Prediction of the flow dynamics of a sphere translating 
near a plane wall using a muti-output deep learning model.”

2. Sergio Molina (2023), “Implementing artificial neural networks to estimate 
coefficients of drag, lift, and torques of spherocylinder particles.”

3. Daniel Hinojosa (2024), “Using an artificial neural network to predict the drag, lift 
and torque coefficients of an ellipsoid in a viscous fluid.”

Ongoing Doctoral Dissertation: 

Jack Smith (expected completion in 2025), “Developing artificial neural network 
models for assemblies of non-spherical particles.”



Neural Network Model for An Spherocylinder

Collect Data
• 1200 data points generated via Direct Numerical 

Simulations (DNS)
• Input features:
−Aspect Ratio, 𝛽𝛽: [1.0 – 6.0]
−Reynolds Number, 𝑅𝑅𝑅𝑅: [0.1 – 300]
−Angle of Incident, 𝜃𝜃 : [0° – 90°]

• Output features:
−Coefficient of Drag, 𝐶𝐶𝐷𝐷: [0 – 400]
−Coefficient of Lift, 𝐶𝐶𝐿𝐿: [0 – 60]
−Coefficient of Torque, 𝐶𝐶𝑇𝑇: [0 – 6]

May 1, 2024 |    18



Neural Network Model for An Spherocylinder

Distributions in Data
• The output label data is right-skewed, exponentially distributed

• Skewed distributions lead to model learning bias due to over-
representation

• The range of values is large which can also result learning bias 
towards larger values
−Coefficient of Drag, 𝐶𝐶𝐷𝐷: [0 – 400]
−Coefficient of Lift, 𝐶𝐶𝐿𝐿: [0 – 60]
−Coefficient of Torque, 𝐶𝐶𝑇𝑇: [0 – 6]



Designing Multi-Layered Neural Network (MLNN)

Data Preprocessing
• Data transformation via Box-Cox transformation

− 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑥𝑥𝜆𝜆

𝜆𝜆
, 𝜆𝜆 ≠ 0

ln 𝑥𝑥 + 1 , 𝜆𝜆 = 0

− 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑦𝑦𝜆𝜆

𝜆𝜆
, 𝜆𝜆 ≠ 0

ln 𝑦𝑦 + 1 , 𝜆𝜆 = 0

− 𝜆𝜆 set to 0.25



Neural Network Model for An Spherocylinder

Selected Neural Network Model
• Learning Rate – 0.001
• Batch Size – 32 
• Epoch – 1000
• Cost Function –Mean Squared Logarithmic Error
• Activation Function (hidden layers) – ReLU

Learning 
Rate Batch Size Layers Train Time RMSE R² Cd R² Cf R² Cm
0.001 32 5 12m 57s 5.5 0.98 0.98 0.98

Learning 
Rate Batch Size Layers RMSE UD R² UD Cd R² UD Cf R² UD Cm
0.001 32 5 2.1 0.99 0.88 0.94

Table 6. MLNN Best Performance Results on Unobserved Data

Table 5. MLNN Best Performance Results on Observed Data



Neural Network Model for An Spherocylinder

Model Performance



Neural Network Model for An Spherocylinder

Comparison with the correlation of drag correlations
• 1000 random cases for aspect ratio, incident angle, and Reynolds 

number

• MLNN achieved a correlation coefficient of 99.9%

• MLNN coefficient of drag estimates fit the correlation extremely 
well 



Artificial Neural Network Model for An Ellipsoid



Artificial Neural Network Model for An Ellipsoid



Artificial Neural Network Model for An Ellipsoid

DNS, ANN predictions, and present correlation comparisons

   



Drag model of an assembly of non-spherical particles

Additional input parameters
• Solid fractions
• Orientations at high solid fractions
• Mixture ratio of different shapes of particles 



Assembly of Spheres: Validations

Stokes flow over an assembly of face-centered arrays of spheres.

Analytical solutions of Hashimoto (1959) for 𝝓𝝓 < 𝟎𝟎.𝟐𝟐

Numerical solution of Sangani and Acrivos (1982)

Dimensionless drag: 



Assembly of Spheres

Influence of different configurations at the same solid fraction and the same 𝒅𝒅𝒅𝒅
𝒅𝒅𝒅𝒅

Influence of number of particles used in a simulation box for 𝝓𝝓 = 𝟎𝟎.𝟐𝟐 and 𝑹𝑹𝑹𝑹 = 𝟓𝟓𝟓𝟓

Number of Particles 50 150 200

Dimensionless Drag F 9.32 9.50 9.44

50 spheres at solid fraction 𝜙𝜙 = 0.287 



Drag model of an assembly of spheres

Ergun: 𝐹𝐹∗ 𝜙𝜙,𝑅𝑅𝑅𝑅 = 150𝜙𝜙/(18 1 − 𝜙𝜙 2 + 1.75/(18 1 − 𝜙𝜙 2 𝑅𝑅𝑅𝑅.
Wen and Yu: 𝐹𝐹∗ 𝜙𝜙,𝑅𝑅𝑅𝑅 = 1 + 0.15𝑅𝑅𝑒𝑒0.687 1 − 𝜙𝜙 −3.7.
Tang et al. (2015):
• 𝐹𝐹∗ 𝜙𝜙,𝑅𝑅𝑅𝑅 = 10𝜙𝜙

1−𝜙𝜙 2 + 1 − 𝜙𝜙 2 1 + 1.5 𝜙𝜙 + 0.11𝜙𝜙 1 + 𝜙𝜙 − 0.00456
1−𝜙𝜙 4 + 0.169 1 − 𝜙𝜙 + 0.0644

1−𝜙𝜙 4 𝑅𝑅𝑒𝑒−0.343 𝑅𝑅𝑅𝑅 .

Random distributions of 100 spheres in a cube for 𝜙𝜙 = 0.1 and 𝜙𝜙 = 0.4. 



An Assembly of Spherocylinders

Individual drag force of 100 spherocylinders in an assembly

1.Individual drag forces fluctuate within approximately 10% of the average drag force.

2.The lift forces exerted on the particles are relatively insignificant when compared to the 
drag forces

Dimensionless fluid-sphere forces of 100 particle at Re=18.3 and 𝜙𝜙 = 0.1 



Assembly of Spherocylinders

Effect of different configurations          Comparison with sphere drag models 



Assembly of Mixed Spheres and Ellipsoids

Average dimensionless drag of an assembly (80 particles) of mixed spheres and 
ellipsoids at solid fraction 𝝓𝝓 = 𝟎𝟎.𝟏𝟏 at different mixed ratio 



Assembly of Mixed Spheres and Ellipsoids

Average dimensionless drag for spheres and ellipsoids:

1. At the same pressure gradient, Reynolds number decreases as the percentages of 
nonspherical ellipsoids increases. 

2. The average drag for spheres is less than that for ellipsoids, i.e., no-spherical 
particles would have higher drag coefficients in comparison with spheres

Percentage of  ellipsoids Re
Average 𝑭𝑭 for all 

particles 
Average 𝑭𝑭 for 

spheres
Average 𝑭𝑭 for 

ellipsoids
0% 179 11.83 11.83 N/A
25% 175 12.13 11.45 14.16
75% 163 12.96 11.42 13.47

100% 153 13.84 N/A 13.84



Current and Future Work

Neural Network Model for the drag coefficients of assemblies of particles

Non-spherical particles:

 spherocylinders, ellipsoids, and mixed bi-disperse assembly  
Input parameters: 
 Reynolds number, aspect ratio, solid fraction, orientation, bi-disperse mixed ratio
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Thank you for your time and attention!
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