

IDAES Integrated Platform for Multi-Scale Modeling and Optimization

Tony Burgard & Debangsu Bhattacharyya

April 23, 2024

IDAES Overview

- IDAES is an open-source, equation-oriented software platform, written in Pyomo (Python-based), that enables the design and optimization of multi-scale, dynamic, interacting technologies and systems.
- <u>Objective</u>: Accelerate design & deployment of integrated power, H₂, and industrial processes to support broad decarbonization and emerging R&D priorities.

Also see: <u>Overview – IDAES</u>

More in-depth overview: Energy Institute Lecture Series: Dr. David C. Miller – Texas A&M Energy Institute (tamu.edu)

On-line documentation: Institute for the Design of Advanced Energy Systems (IDAES) — IDAES v2.4.0 (idaes-pse.readthedocs.io)

- Major Focus Areas:
 - 1. Growing the user base in strategic areas
 - 2. Ensuring that existing projects leveraging IDAES are successful
 - 3. Continuing to build out advanced capabilities

Several Modeling Collaborations Now Use IDAES

IDAES New Capability Development

- Infrastructure planning of reliable and carbon-neutral power systems
- Integrating manufacturing considerations into process design
- Integrated process market optimization of power and H₂ systems
- Dynamics, control, health modeling and optimization of power and H₂ systems

Infrastructure Planning of Reliable & Carbon-Neutral Power Systems

• Objective

 To determine long-term (yearly) investment decisions (time, location, number of power facilities) while considering short-term (hourly) operation decisions and explicitly valuing power system reliability.

Research challenge

- How to solve these problems at a meaningful scale!
- Simplifications (e.g., representative days, ignoring reliability penalties, storage, and uncertainty) and scale reductions (e.g., short time horizons, small regions, clustering of generators) are needed to make the problems solvable but limit their usefulness for long-term decision making.

IDAES Institute for the Design of Advanced Energy Systems

San Diego County Case Study: Why consider reliability?

California Policy and Regulatory Environment	Scenario #1	Scenario #2	Scenario #3
CO ₂ emission limits (30% reduction by Y10)	Х	0	0
Renewable generation (60% of the total generation by Y10)	Х	Х	0

Solution A: Results of expansion planning **without** reliability consideration **Solution B**: Results of expansion planning **with** reliability consideration

 ¹ EENS (MWh/planning period) and LOLE (hours/planning period) over 10 years are estimated.
 ² LOLE and EENS of solution A are analyzed after obtaining the optimal configuration. *Higher EENS and LOLE indicate the power system has a relatively lower reliability level.*

The framework enables users to estimate cost of designing power systems that can flexibly respond to failures.

San Diego County Case Study: What leads to reliability improvement?

Solution A: Results of expansion planning **without** reliability consideration **Solution B:** Results of expansion planning **with** reliability consideration

- Primary means of improving reliability was extending lifetimes of NG simple cycle plants to serve as back-ups.
- Capacity of renewable generators, which have lower failure rates than dispatchable generators, is also increased, albeit minimally.

IDAES New Capability Development

- Infrastructure planning of reliable and carbon-neutral power systems
- Integrating manufacturing considerations into process design
- Integrated process market optimization of power and H₂ systems
- Dynamics, control, health modeling and optimization of power and H₂ systems

Optimization Approaches for Rapid Design and Deployment of Industrial Decarbonization Processes

• Objective

 Simultaneously design families of processes able to address a wide range of operating conditions and performance requirements, that maximize the use of shared sub-components/unit operations.

• Why does this matter?

- De-risks large-scale deployments by explicitly integrating manufacturing considerations into design
- Reduces both deployment times (since fewer units will require custom design & fabrication) and manufacturing costs (by exploiting economies of learning since we produce a larger number of each of the units)

Case Study: MEA Carbon Capture

Successfully designed 63 carbon capture systems using only 3 optimally designed absorbers & strippers

Investigating specific parameters for CO2 capture processes

11

IDAES New Capability Development

- Infrastructure planning of reliable and carbon-neutral power systems
- Integrating manufacturing considerations into process design
- Integrated process market optimization of power and H₂ systems
- Dynamics, control, health modeling & optimization of power and H₂ systems

Analysis of Integrated Energy System Concepts

Are there plausible electricity market scenarios where an integrated system makes sense? If so, which system is the best?

Analysis of Flexible Power and H₂ Systems

- Systems Under Evaluation All > 97% CO2 Capture
 - Single Product: NGCC, SOFC, SOEC
 - Multi Product: NGCC+SOEC, SOFC+SOEC, rSOC
- 61 total data sets (every hour for a year)
 - 2019 & 2022: ERCOT, ISO_NE, MISO, PJM, SPP, NYISO
 - Future projections from NREL and Princeton from ARPA-E FLECCS program
 - Future projections from NETL for ERCOT using PROMOD IV

Data sets cover very broad range of potential scenarios

Flexible Power/H₂ Systems Outperform Single Product Systems

How might we control these systems to switch between operating modes while minimizing degradation over long-term operation?

% of electricity market scenarios with positive annualized profit assuming \$2/kg H₂ selling price

NGCC (power only)	13%
SOFC (power only)	52%
SOEC (H2 only)	74%
NGCC + SOEC (power and/or H2)	16%
Reversible SOC (power or H2)	97%
SOFC + SOEC (power and/or H2)	98%

Integrated power and hydrogen systems are the most robust to electricity market assumptions.

Integrated power and hydrogen systems provide greatest benefits in scenarios with bimodal electricity pricing (e.g., high VRE).

IDAES New Capability Development

- Infrastructure planning of reliable and carbon-neutral power systems
- Integrating manufacturing considerations into process design
- Integrated process market optimization of power and H₂ systems
- Dynamics, control, health modeling & optimization of power and H₂ systems

Dynamic Model of SOC-based System for Mode-Switching

hstrm06

- **SOC dynamic model** (Bhattacharyya et al., 2007)
 - First-principles, non-isothermal, planar cell
 - 2D electrodes, electrolyte, and interconnect
 - 1D fuel and oxygen channels
 - Operates in fuel cell and electrolysis modes
- **Dynamic SOC-based system model** (Allan et al., 2023)
 - Now publicly available online
 - Soon to be merged into the IDAES examples repository
 - H₂ fueled in fuel cell mode
 - Vent gas recirculation with purge
 - **Condenser** to remove water from H_2 -side off-gas
 - Equipment models for thermal management
 - 1D multi-pass crossflow recuperative heat exchangers
 - 1D crossflow trim heaters

- Lee, A., et al., J Adv Manuf Process 2021, 3(3) (2021).
- Bhattacharyya et al., Chem Eng Sci, 62, 4250-4267 (2007).
- Allan, D.A., et al., In Proc. FOCAPO/CPC (2023).

Interconnect H_20 H_2O \rightarrow Fuel Channel H_2O H_2 Fuel Electrode $H_2O + 2e^- \rightarrow H_2 + O^2$ Electrolyte $0^{2-} \rightarrow 0_2 + 4e^-$ Oxygen Electrode $\frac{Air}{O_2}$ Air **Oxygen Channel** Interconnect steam_hot_exchanger steam heat knockout Hydrogen Side sweep heater SOEC Oxygen Side

Block flow diagram of H₂-fueled SOC-based IES for Mode-Switching Operation

SOEC Microstructure Chemical Degradation Modeling

Fuel electrode nickel (Ni) agglomeration

- Ni particles grow with time under high temperature operation
- Ni₂OH formation drives the process
- Surface-diffusion Ostwald ripening

$$\frac{d(\overline{d_{Ni}})}{dt} = C \frac{X_{Ni}}{X_{YSZ}A_{YSZ}\overline{d_{Ni}^6}} \left(\frac{Y_{H_2O}}{Y_{H_2}^{0.5}}\right) \exp\left(-\frac{E_a}{RT}\right)$$

Refs: J. Sehested et al. / *Applied Catalysis A*: General 309 (2006) 237–246

YSZ electrolyte phase transformation

- Phase transformation of YSZ from cubic to tetragonal structure
- Results in decrease in electrolyte conductivity

$$\sigma_{El} = \sigma_{El,0} \left[\lambda + (1 - \lambda) \exp\left(-\frac{t}{\tau}\right) \right]$$

Refs: Jiang et al. *Journal of the American Ceramic Society* 82(11):3057 - 3064

Lanthanum zirconate (LZO) scale growth

- At oxygen electrode under oxidizing conditions and high temperatures driven by high P_{O_2}
 - $LaMnO_3 + ZrO_2 + 0.25\tilde{O}_2 \rightleftharpoons 0.5La_2Zr_2O_7 + MnO_2$
- Parabolic growth law $\frac{dl_{LZO}(t)}{dt} = \frac{K_{g,LZO}}{2l_{LZO}(t)X_{0,LZO}\rho_{LZO}} exp\left(\frac{E_{LZO}}{RT}\right)$

Refs: A. Kamkeng, and M. Wang. / *Chemical Engineering Journal* 429 (2022): 132158

LSM-YSZ phase coarsening

- Driven by Mn^{2+} diffusion from LSM surface toward LSM-YSZ interface
- Results in loss of TPB length
- Model derived by assuming Fick's law diffusion of Mn^{2+}

$$\frac{L_{TPB}}{L_{TPB,0}} = 1 - 2 \times \left(\frac{t \times D_{LSM}}{\pi}\right)^{1/2}$$

Refs: A. Kamkeng, and M. Wang. / Chemical Engineering Journal 429 (2022): 132158

Optimizing Long-Term SOEC System Operation

Case 1: Maximize Integral Efficiency

$$max \frac{1}{t_f - t_0} \int_{t_0}^{t_f} \eta_t dt$$

st.
$$h(x) = 0$$

$$\frac{dR}{dt} = f_R(x, t)$$

$$\eta_t = \frac{HHV(\dot{m}_{H_2,t})}{P_{in,total,t}} \qquad \forall t$$

Case 3: Minimize Levelized Cost of Hydrogen (LCOH)

LCOH =

$$CRF_{BOP}CC_{BOP} + \sum_{i=1}^{R} CRF_{stack,i}CC_{stack} + OC + EC$$

 $m_{H_2,\text{lifetime}}$

Case 2: Minimize Final Degradation

$$\min \Delta V \left(\theta_{t_f}\right)$$

st.

$$h(x) = 0$$

$$\frac{dR}{dt} = f_R(x, t)$$

$$\theta_{tf} = \theta_{t0} + \int_{t_0}^{t_f} \dot{\theta}(x, \theta) dt$$

Decision variables at each time point:

- 1. Feed heater duties
- 2. Sweep heater duties
- 3. Sweep blower flowrate
- 4. Feed exchanger flowrate
- 5. Feed recycle ratio
- 6. Sweep recycle ratio

Quasi-Steady State Optimization Results for 3 Objective Functions under Galvanostatic, Potentiostatic, and Flexible Operation for Low- and High-Price Electricity Markets

		Electricity Price = 0.03 \$/kWh		Electricity Price = 0.3 \$/kWh	
Operating Profile	Objective Function	Replacement Schedule (years)	LCOH (\$/kg H ₂)	Replacement Schedule (years)	LCOH (\$/kg H ₂)
Galvanostatic Operation	Minimize terminal degradation	5	2.00	5	13.00
	Maximize Integral Efficiency	2	2.29	2	11.92
	Minimize LCOH	5	1.93	2.5	11.84
Potentiostatic Operation	Minimize terminal degradation	3	2.11	3	12.51
	Maximize Integral Efficiency	2	2.30	2.0	11.93
	Minimize LCOH	3	2.05	2.0	11.91
Free Operation	Minimize terminal degradation	5	1.99	5	13.01
	Maximize Integral Efficiency	3	2.02	2.5	11.78
	Minimize LCOH	5	1.92	2.5	11.78

Process Control for SOC-based System Mode-Switching

- Classical Control: Proportional-Integral-Derivative (PID)
- Nonlinear Model Predictive Control (NMPC)
 - Well-suited to highly interactive manipulated variables and constraint handling

• Allan, D.A., et al., In Proc. FOCAPO/CPC (2023).

• Dabadghao, V., Ph.D. Thesis, CMU (2023).

Controller	Manipulated Variables (MVs)	Controlled Variables (CVs)
PID, NMPC	Cell potential	Outlet Water Concentration
PID, NMPC	Steam/H ₂ feed rate	H_2 production rate
PID, NMPC	Feed heater duty	Feed heater outlet
PID, NMPC	Sweep heater duty	Sweep heater outlet temperature
PID, NMPC	Steam heater outlet temperature setpoint*	SOC steam outlet 中 temperature
PID, NMPC	Sweep heater outlet temperature setpoint*	SOC sweep outlet 📫 temperature
PID, NMPC	Sweep feed rate	SOC temperature 🔶
NMPC	Feed recycle ratio	
NMPC	Sweep recycle ratio	
NMPC	Vent gas recirculation (VGR) recycle ratio	
NMPC	H _{2/} H ₂ O ratio in make-up	

*artificial control variables

Dynamic Simulation and Control Results for Ramping Operation

- Classical Pl control of H₂ production rate shows overshoot, not exhibited by NMPC
- NMPC yields smoother heater duty profiles than PI control
- NMPC yields smoother SOC temperature gradient and lower spatial extremum magnitude than PI control

Summary

- IDAES has become a foundational modeling and optimization platform enabling us to address several major national and DOE priorities.
- The core program is focused on ensuring existing projects leveraging IDAES are successful while continuing to build out new capabilities.
 - Integrating short-term operational realities into long term expansion planning of reliable, decarbonized grids.
 - Integrating manufacturing considerations into process design to reduce both deployment times & manufacturing costs.
 - Optimizing the design, operation, and control of integrated power and H₂ systems.
- Several advanced dynamic optimization & control capabilities have been recently developed for flexible SOC systems.
 - Long-term SOEC optimization considering chemical degradation can be used to optimize stack replacement schedule and operating trajectories.
 - Nonlinear model predictive control (NMPC) can explicitly restrict temperature gradients/curvatures or other constraints compared to classical control.

Acknowledgements

The IDAES team gratefully acknowledges support from the U.S. DOE's Hydrogen with Carbon Management and Simulation-Based Engineering Research Programs.

Office of Fossil Energy and Carbon Management: Eva Rodezno, Robert Schrecengost

National Energy Technology Laboratory: David Miller, Tony Burgard, Benjamin Omell, Steve Zitney, John Eslick, Andrew Lee, Miguel Zamarripa, Jinliang Ma, Jaffer Ghouse, Chinedu Okoli, Arun Iyengar, Anca Ostace, Anuja Deshpande, Alex Noring, Naresh Susarla, Radhakrishna Gooty, Doug Allen, Ryan Hughes, Andres Calderon, Brandon Paul, Adam Atia, John Brewer, Nadejda Victor, Maojian Wang, Peng Liu, Sydni Credle, Jason

Hissam, Eric Liese, Nate Weiland, MaryAnn Clarke, John Crane

Sandia National Laboratories: John Siirola, Bethany Nicholson, Michael Bynum, Jordan Jalving, Emma Johnson, Katherine Klise, Shawn Martin, Miranda Mundt, Edna Soraya Rawlings, Kyle Skolfield

Lawrence Berkeley National Laboratory: Deb Agarwal, Dan Gunter, Keith Beattie, John Shinn, Hamdy Elgammal, Joshua Boverhof, Karen Whitenack, Oluwamayowa Amusat, Sarah Poon

Carnegie Mellon University: Larry Biegler, Chrysanthos Gounaris, Ignacio Grossmann, Carl Laird, John Eason, Owais Sarwar, Natalie Isenberg, Chris Hanselman, Marissa Engle, Qi Chen, Cristiana Lara, Robert Parker, Ben Sauk, Vibhav Dabadghao, Can Li, David Molina Thierry, Mingrui Li, Seolhee Cho, Georgia Stinchfield, Jason Sherman, San Dinh

West Virginia University: Debangsu Bhattacharyya, Paul Akula, Quang-Minh Le, Nishant Giridhar, Matthew Alastanos, Daniel Beahr

University of Notre Dame: Alex Dowling, Xian Gao, Xinhe Chen, Nicole Cortes, Daniel Laky

Georgia Tech: Nick Sahinidis, Yijiang Li, Selin Bayramoglu

2024 Joint IDAES/CCSI₂/PrOMMiS Technical Team Meeting Lawrence Berkeley National Lab

Register as Stakeholder or User:

https://idaes.org/about/contact-us/

