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Total Conductivity vs P(O2) at P(H2O)= 10-1, 10-2, and 10-3 atm
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Transport number vs P(H2) at P(H2O)= 10-1, 10-2, and 10-3 atm
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BaZr0.9Y0.1O3-δ Brower Diagrams, Conductivities, Transport Numbers vs P(O2)/P(H2) and P(H2O)

Defect Thermodynamic Modeling of (La,Ba)Fe1-xMxO3-δ Triple Conducting Electrodes [4,5]
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• Density functional theory based defect thermodynamic modeling was performed to determine the effect of humidity and H2/O2 gas 
pressure on various defect chemistry and transport properties of perovskite and fluorite oxides for solid-oxide and proton-conducting-
oxide cell applications, including both the electronic-conducting oxides (as electrodes) and insulating oxides (as electrolytes).

• GNU Octave defect model tools were developed to facilitate defect modeling of electronic conducting oxides in a wide range of
operating conditions guided by modeling and experiments. The model includes the hydride defect formation reaction under reducing
conditions and allows to incorporate nonstoichiometry effects on the defect thermodynamic parameters.

• Automatic defect generation workflow and first principles charged defect analysis were implemented on NETL Joule supercomputer for 
modeling defect equilibria and transport properties of insulating oxides as electrolytes in SOCs and proton-conducting ceramic cells.
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Modeling of BaZr1-xYxO3-δ (x≤0.1) Defect & Transport Properties for Proton Conducting Electrolytes [1]

Modeling of Cation Defect and Transport Properties in bulk LSM and YSZ [2,3]
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Defect reaction energies as function of δ guided by DFT modeling 
were used to generate Brouwer diagrams of BaFe0.9Y0.1O3-δ [4].

Stability of dry (empty bar) and hydrated (blue bar) BaFeO3-δ
vs. δ and different magnetic ordering.

GNU-Octave scripts of the (La,Ba)Fe1-xMxO3-δ defect model solver available at NETL-EDX: 
https://edx.netl.doe.gov/dataset/triple_conducting_perovskite_defect_model 

T=600 K

Ba0.95La0.05Fe0.9O3-δ: Experimental hydration and defect formation enthalpies and entropies reported in the literature [6] were 
applied to generate Brouwer diagrams of Ba0.95La0.05Fe0.9O3-δ [6], with addition of the modeled hydride (HO) defect formation energies 
and entropies incorporated into the model to examine defect equilibria under reducing conditions at various operating temperatures

T=600 K

BaFe0.9Y0.1O3-δ

(more detailed results at various temperature, e.g. T=873-1173K can be obtained from the solver [5]).


