Techno-Economic Analysis on Biogas Utilization in Refuse Power Plants (DE-FE0032194)

2024 FECM/NETL Spring R&D Project Review Meeting

Opportunity

- Use retrofitted power plant to generate greener energy • Co-firing (waste coal/biogas) integrated with CO₂
- capture can achieve net negative carbon emissions • Inflation Reduction Act Section 45Q offers \$85/tonne-
- CO₂ sequestered with sufficient GHG Abatement [1]

Present Situation

- Determine if 80MW-net powerplant combusting waste coal could benefit from co-firing biogas with a CO₂ capture system
- Retrofit process implements turbine to co-fire biogas, generating power, reducing waste coal usage

Process Description

Investigate configuration of fuel ratios and varying sizes of CCS system to assess economic viability

- <u>Case 1</u> no retrofit is implemented (baseline)
- <u>Cases 2-4</u> use biogas generated power to implement a larger CCS system
- <u>Cases 6-8</u> constant CCS size with excess biogas power sold in place of steam-generated power
- <u>Case 9</u> assumes plant's willingness to derate its power output to capture 90% CO_2 (68 MW-net)

Biogas Waste Coa Capture % Sequestered

Global Warming Potential (kg-CO2eq/MWh)

Levelized Cost of Electricity Breakdown

This research is sponsored by the U.S. Department of Energy Office of Fossil Energy and Carbon Management under Award Number: DE-FE0032194

[1] Congressional Research Service (CRS), "The Section 45Q Tax Credit for Carbon Sequestration," CRS, 2023. [2] Heidari-Maleni, A., Taheri-Garavand, A., Rezaei, M., & Jahanbakhshi, A. (2023). Biogas production and electrical power potential, challenges and barriers from municipal solid waste (MSW) for developing countries: A review study in Iran. Journal of Agriculture and Food Research, 13, 100668. https://doi.org/10.1016/j.jafr.2023.100668 [3] Wade, S. (2021, November 8). What to do with gob?. Cardinal News. https://cardinalnews.org/2021/11/09/what-to-do-with-gob/ [4] National Energy Technology Laboratory, "Quality Guidelines for Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance," U.S. DOE, Pittsburgh, PA, 2021.

UND Department of Chemical Engineering; Energy & Minerals Innovation Center - Marco Hernandez, Dr. Klemetsrud, Dr. Van der Watt

	Units	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	(
	kg/hr	_	5,300	10,600	15,900	21,200	5,000	
al	kg/hr	56,800	55,400	54,000	52,600	51,200	55,500	
6		0%	32%	61%	84%	91%	29%	
CO ₂	tonne/hr	-	33	67	98	111	30	

Acknowledgement: Lawrence Anyim, Ahmed Essam

Methodology

Modeling Based Approach

- ASPEN Plus V14 Simulations developed to determine optimal operating conditions
- Piperazine \rightarrow lower degradation and energy consumption vs industry standards for CO₂ removal
- TEA utilized NETL-based Cost Estimation Methodology with -15/+30% uncertainty [4]

Compare

- <u>Levelized Cost of Electricity (LCOE)</u> needed revenue per MWh-net to meet retrofit's capital & operating cost
- <u>Breakeven CO₂ Value</u> minimum CO₂ value per tonne-CO₂ stored to justify retrofit costs
- <u>Breakeven CO₂ Emissions Penalty minimum CO₂ value</u> per tonne-CO₂ emitted to ensure positive expenditure

Conclusions

- Increased biogas utilization resulted in lower GWP with same net power output
- Lower GWP correspond to Higher LCOE values
- Efficient implementation dependent on current and future accessibility to biogas
- Higher amounts of biogas necessitate lower GHG abatement incentive to justify feasibility

This tool informs powerplants of the potential benefits of implementing biogas utilization and carbon capture as it aligns with their priorities.

Future Work: determine economic viability of a newly constructed powerplant utilizing both resources

Carbon Dioxide Incentives

