Ternary alloy membranes for carbon-neutral hydrogen production from biomass gasification exhaust

Mohamed Ali Elharati^a, Simona Liguori^{a,*}

^a Chemical and Biomolecular Engineering Department, Clarkson University, Potsdam, NY 13699, USA

Objectives

- > Synthesize ternary ($Pd_{(1-x-y)}$ -Au_x-Ag_y) metallic membranes with:
 - \checkmark high selectivity to hydrogen,
 - \checkmark high surface area,
 - \checkmark thermochemical stability.

 \checkmark enhance hydrogen yield,

Mostly high-pressure CO₂

N₂ permeating flux at 25°C & 1 bar and SEM-EDX analysis

■ Blank ■ ZrO2 doped Pd Layer ■ 3 * ELP Pd Layer ■ 6* ELP Pd Layer

Synthesis of Pd-based, Binary, and Ternary Membranes

Electroless Plating Method

Palladium (Pd): H ₂ NNH ₂ + 4 OH ⁻ → N ₂ + 4 H ₂ O + 4 e ⁻	(1)	N ₂ $4 H_2O$ $4 H_4^+$ $(5)/4 Cl^-$
$2 \operatorname{Pd}^{2+} + 4 \operatorname{e}^{-} \rightarrow 2 \operatorname{Pd}^{0}$	(2)	H ₄ N ₂
2 $Pd^{2+} + H_2NNH_2 + 4 OH^- \rightarrow 2 Pd^0 + N_2 + 4$ Silver (Ag):	4 H ₂ O	4 NH ₄ OH (1) 4 OH (4) (4) (4)
$4 \text{ Ag}^+ + 4 \text{ e}^- \rightarrow 4 \text{ Ag}^0$	(3)	$2 \operatorname{Pd}^{2+} \xleftarrow{(3)}{2 \operatorname{PdCl}_2}$
$4 \operatorname{Ag}^{+} + \operatorname{H}_{2}\operatorname{NNH}_{2} + 4 \operatorname{OH}^{-} \rightarrow 4 \operatorname{Ag}^{0} + \operatorname{N}_{2} + 4$	H ₂ O	Pd P
Au ³⁺ + 3 e ⁻ \rightarrow 3 Au ⁰	(4)	Pd P
Au ⁺³ + ³ ⁄ ₄ H ₂ NNH ₂ + 3 OH ⁻ → 3 Au ⁰ + ³ ⁄ ₄ N ₂	+ 3 H ₂ O	Ag Au Ag Au Pd Pd Pd Pd Pd Pd Pd Pd Pd Seed Support
Solution-Di	ffusio	on Mechanism
		$Flux (J_i) = P_i(p^n_{retentate} - p^n_{permeate})$
		P :

1µm Clarkson 2/ 20.0kV LED SEM WD 10.0mm

2.50

2.00

² Flux J_{N2}, ml/min 1.00 1.00

> A dense, uniform, defectfree Pd layer covered the entire PSS support pores. \succ The ZrO₂-doped Pd layer decreased the N₂ permeating flux, indicating the blocking of the pores.

PSS Support Characterization

N₂ permeating percentage at 25°C & 1 bar

P^{0.6}_{Retentate} - P^{0.6}_{Permeate}, Bar^{0.6} P^{0.6}_{Retentate} - P^{0.6}_{Permeate}, Bar^{0.6} Effect of pore size and alloy composition on membrane performance at 400 °C

0.20 0.18	■0.5M/PSS - 100% Pd ◆0.5M/PSS - 99% Pd, 1% Au	Membrane	Permeance, mole/m ² .sec.Pa	E₀, kJ/mole	Thickness, µm	H ₂ Flux, mole/m ² .sec	ldeal Selectivity
ບ 0.16 ອິດ ເງິດ.14	▲ 0.5M/PSS - 86.8% Pd, 3.1% Ag, 10.1% Au * 0.5M/PSS - 63.1% Pd, 23.9% Ag, 13% Au	0.5M/PSS - 100% Pd	6.95E-07	12.41	17.43	0.0695	2550
u e 0.12 u 0.10	● 0.2M/PSS - 100% Pd ○ 0.2M/PSS - 68.6% Pd, 31.4% Au	0.5M/PSS - 99% Pd, 1% Au	5.49E-07	14.48	34.16	0.0549	infinite
۲ ۲ 0.08 ۲ 0.08		0.5M/PSS - 86.8% Pd, 3.1% Ag, 10.1% Au	4.40E-07	13.99	54.02	0.0440	infinite
Ξ ^{0.00} Ξ [°] 0.04		0.5M/PSS - 63.1% Pd, 23.9% Ag, 13% Au	6.68E-07	11.73	11.35	0.0668	infinite
0.02		0.2M/PSS - 100% Pd	4.14E-07	13.58	50.52	0.0414	infinite
0.	00 0.20 0.40 0.60 0.80 1.00 1.20 1.4 P ^{0.6} _{Retentate} - P ^{0.6} _{Permeate} , Bar ^{0.6}	^{I0} 0.2M/PSS - 68.6% Pd, 31.4% Au	3.14E-07	17.61	67.03	0.0314	infinite
Addin flux ar	g Au and Ag positively impacts the H_2 nd activation energy E_0 of the prepared	0.2M/PSS – 70.3% Pd, 3.3% Ag, 26.4% Au	4.96E-07	11.95	90.87	0.0496	infinite
memb	rane.						

Conclusion

- \succ Ternary alloy (Pd_(1-x-y)-Au_x-Ag_y) membranes were synthesized with an infinite ideal selectivity and highly selective toward hydrogen.
- \succ Depending on the fabrication conditions, the ELP technique led to dense membranes with a $10 - 90 \,\mu m$ thickness range.
- > PSS support plays a key role; although small pore sizes led to lower hydrogen flux, they also led to infinite ideal selectivity.

Acknowledgment

to the required amount of Pd, Au, and Ag to block

its pores and fabricate a dense membrane.

The authors would like to thank US DOE

for their fund.

