Computational Screening and Design of Sensing Materials for Harsh Environment Applications

Leebyn Chong^{1,2}, Jordan Chapman¹, Tarak Nandi^{1,2}, Jeffrey Wuenschell^{1,2}, Yueh-Lin Lee^{1,2}, Dan Sorescu¹, Samuel Bayham¹, Yuhua Duan^{1*} ¹ National Energy Technology Laboratory, U. S. Department of Energy, Pittsburgh, PA 15236, USA

² NETL Support Contractor, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

Introduction

- materials able to work under **harsh environments** are required.
- Semiconducting optical-based sensor platforms show promise. MO_x metaloxides and ABO₃ perovskite-oxides can be attractive for high-temperature ABO₃ allows tunable electronic and optical properties owing to flexible choices of A, B dopants and forming oxygen non-stoichiometric point-defects

$$\Delta H(SrTiO_{3,def}) = E(SrTiO_{3,def}) - E(SrTiO_{3}) - \sum n_i \mu_i$$

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) = (n + ik)^2 = \frac{4\pi i}{\omega}\sigma(\omega)$$

$$\Delta \epsilon_{nk}(T) = \frac{1}{N_q} \sum_{\boldsymbol{q},\nu} \frac{a_{\boldsymbol{q}\nu;\boldsymbol{q}\nu}^{(2)}}{\omega_{\boldsymbol{q}\nu}} \Big[\frac{1}{2} + n_B \big(\omega_{\boldsymbol{q}\nu}, T \big) \Big]$$

• Fit to empirical O'Donnell model

$$E_g = E_O - S < \hbar\omega > \left[\coth\left(\frac{<\hbar\omega>}{2k_BT}\right) + \right]$$

 P. B. Allen, V. Heine, J. Phys. C 9(1976)2305-12 • P. B. Allen, M. Cardona, Phys. Rev. B 23(1981)1495-1505

Machine Learning

Principal component analysis applied to combine 37 features into one reduced feature for each parameter in the O'Donnell model

E_0	S	$<\hbar\omega>$
Formation energy , molar density, melting point	Atomic mass, Electron-Phonon Debye temperature , thermal conductivity, heat of vaporization, speed of sound, boiling point, melting point	Entropy of formation heat capacity, volume density

 \blacktriangleright Bolded features were found to have the highest absolute value of the eigenvector (high relative importance in their respective principal component) \blacktriangleright Gaussian process (GP) regression models were trained separately for each of the three parameters

Doped Perovskite Sensing Layers on Optical Fiber

Publications

- J. Park *et al.*, Phys. Chem. Chem. Phys. 22(2020) 27163-72; ACS Appl. Mater. Interfaces 13(2021) 17717-25; J. Phys. Chem. C 125(2021) 22231-38; 126(2022)8832-38; Chem. Mater. 34(2022)6108-15
- Y.-N. Wu et al., J. Phys. Chem. C 122(2018) 22642-49; J. Phys. Chem. Lett. 11(2020) 2518-23; J. Phys. Condens. Matter 32(2020) 405705.
- T. Jia et al., RSC Adv. 7(2017) 38798-804; Phys. Chem. Chem. Phys. 22(2020) 16721-26; Applied Energy 281 (2021)116040; J. Phys. Chem. C 125(2021) 12374-81; 126(2022)11421-25
- Y. Duan *et al.*, J. Solid State Chem. 256(2017) 239-251.
- S. Nations, *et al.*, **RSC Adv. 11**(2021) 22264-72; **Mater. Adv. 3**(2022)3897-3905; **Nanomaterials 13**(2023)276 • T. Nandi, L. Chong, J. Park, W. A. Saidi, B. Chorpening, S. Bayham, Y. Duan, AIP Advances 14(3)(2024)035231.

Contact information: Tel. 412-386-5771, email: yuhua.duan@netl.doe.gov

Research & Innovation Center

Applicability of AHC Theory via Machine Learning

- Assess the consensus between the AHC theory and the measurements on temperature dependence of the band gaps in MO_x and ABO_3 - In conjunction with O'Donnell model to quantify the temperature dependence
- of band gaps using well-defined parameters

• Machine learning (ML) for predicting O'Donnell model parameters in MO_x - Ultimately enables ML prediction of the temperature dependence of band gaps

- $Sr_8Ti_8O_{24}$ ----H + $Sr_8Ti_8O_{24}$ ---O + $Sr_8Ti_8O_{24}$ ---- $Sr_8Ti_8O_{24}$ ----H + $Sr_8Ti_8O_{24}$ ----O + $Sr_8Ti_8O_{24}$ ---- $Sr_8Ti_8O_{24}$ ----H + $Sr_8Ti_8O_{24}$ ----O + $Sr_8Ti_8O_{24}$ ---- $Sr_8Ti_8O_{24} \longrightarrow$ H + $Sr_8Ti_8O_{24} \longrightarrow$
- O + Sr₈Ti₈O₂₄ -

Machine Learning

- O'Donnell parameters have been calculated by DFT for 54 metal oxides and are accepted as ground truth for the development of the ML models
- Most of the training data as well as the test predictions fall within the predicted mean $\mu \pm 2\sigma$ region
- Region of uncertainty is observed to be larger where the training points are populated sparsely and significantly for increases regions outside of the training dataset

	RMSE	MAE
E _o (eV)	0.8863	0.6729
S	1.142	0.8881
ħω (meV)	6.943	5.414

SnO₂ used as an example test data point for the combined prediction of parameters to calculate band gap

SnO ₂	Predicted	Observ
E _o (eV)	2.8101 ± 0.8618	1.99
S	3.8541 ± 2.1652	2.3
ħω (meV)	30.2017 ± 6.3966	40.
E _g (eV) @ 1000 K	2.2555	1.6

Science & Engineering To Power Our Future

