SUST 200 N

High Purity Oxygen Generation through Modular Structured Rapid Pressure Swing Adsorption

DE-FE0032335

Jian Zheng Susteon Inc

U.S. Department of Energy National Energy Technology Laboratory 2024 FECM/NETL Spring Project Review Meeting April 22-25, 2024

Project Overview

Period of Performance	10/01/2023 – 09/30/2025	
Project Funding	DOE: \$1,250 K	Cost-Share: \$312.5 K
Overall Project Goal	Development of a novel RPSA (>95%) oxygen production at <	process for high-purity <\$45/ton.
Project Participants	Susteon Inc Georgia Institute of Technolog Generon	SUSTCON Georgia Tech GENERON
DOE/NETL Project Manager	Mr. John P. Homer	

Organization Chart

Technology Background – High Purity H₂

 DOE/NETL is targeting clean H₂ production through biomass/waste gasification, with ultimate cost goal of ≤ \$1/kg H₂

 High-purity oxygen allows higher H₂ productivity

 Critical to produce high-purity (>95%) oxygen at low cost

Syngas composition for air and oxygen fed gasification of biomass

DSA Inlet Syngas Cone	Oxygen Conc. %										
r SA fillet Syligas Colic.	21 v%	96%	100 v%								
H2	28.9%	82.1%	85.3%								
СО	2.24%	2.47%	2.22%								
CO ₂	0.03%	0.01%	0.01%								
CH ₄	3.38%	11.24%	10.10%								
N ₂	65.0%	4.14%	2.42%								
LHV, MJ/Nm ³	4.09	9.34	9.61								
Biomass feed, kg/hr	33,393	33,393	33,393								
PSA H ₂ Recovery	49%	80%	87%								
H ₂ Product Rate, kg/hr	862	1431	1500								
			×								

High Purity O2 through Commercial ASU

- Flexible and modular 5 MW biomass gasification systems typically require 50 ton/day (TPD) of oxygen
- DOE Requirement for O₂
 - > 95% purity, < \$45-50/ton
- Cryogenic air separation unit (ASU) does not meet the requirement
 - Can produce 99+% pure O₂
 - Typical Size: 1000 4000 TPD
 - Oxygen costs: \$33/ton to \$70/ton, depending on scale and site
 - Does not scale down costeffectively below 200 ton/day

O₂ Production through Commercial VPSA

- Commercial VPSA is based on LiX zeolite beads
 - Can only produce ~90% purity O₂ (due to presence of 1% Ar in air)
 - Typical size: 5 250 TPD
 - Oxygen cost \$50/ton to \$80/ton
 - Power consumption contributes to ~ 50% of O_2 production cost with **high** ΔP
 - Poor operational reliability

LiX bound with dense clay

This project:

Fiber-adsorbents

LiX bound in porous polymer

Technical Approach Step#1 – Fiber RPSA

Fabricate zeolite adsorbent in fiber form

- Reduce the pressure drop, attrition, and dusting of the current beaded bed system by using **fibrous-structured** adsorbent
 - Order of magnitude lower △P
- Reduce the bed size factor (BSF) by employing rapid cycles in PSA using fiber structured beds
 - >30% lower BSF (equivalent to higher throughput)
- Maximize adsorption capacity and rate through optimized fiber manufacturing with suitable polymer binder

Sujan, A. R. et al.; Ind. Eng. Chem. Res. 2018, 57, 11757.

Performances	Typical Beads	Target Fibers
Bed Size Factor - BSF (Ib of adsorber/ton O ₂ /day)	600	400
Recovery (%)	55	65
Spec Power (kWh/ton)	250	210

Preliminary Lab Fiber RPSA Testing

- Fully automated rapid cycles (< 20 seconds)
- Two-bed system operates at cyclic steady-state

Feed	O ₂	O ₂ Purity	Bed Size Factor	O ₂
Gas	Target	Achieved	(Ib/TPD)	Recovery
Dry Air	> 90%	90.2%	360	67.4%

Technical Approach Step#2 – High Purity O₂ through 2-Layer Fiber RPSA

- Introduce a 2nd-layer adsorbent, also in fiber form, specifically for Arremoval as further purification of ~90% → 95+% O₂
 - Explored AgX zeolite as the known Ar-selective adsorbent
 - Novel carbon molecular sieve (CMS) showed surprisingly good Ar-selectivity
 - CMS can be made from readily available cellulose

Preliminary 2nd-Layer RPSA Testing

Module Type	Feed Gas *	Pressure Gas **	O ₂ Target	O ₂ Purity Actual	Bed Size Factor (Ib/TPD)	O ₂ Rec.	F
LiX+AgX	SG	SG	> 95%	93.5%			
LiX+CMS	SG	SG	> 95%	94.8%	111	59.0%	
AgX	SG	O ₂	> 95%	96.9%	68	67.4%	C
CMS	SG	O ₂	> 95%	96.4%	25	80.9%	N
LiX+CMS	SG	O ₂	> 95%	98.4%	141	58.3%	

*SG: 90% O₂, 6% N₂, 4% Ar

**Pure O₂ pressurization to help counter lab system void

- This approach provides a pathway to produce >95% purity O₂
- Critical to manufacture high-performance fiber adsorbents at low-cost

Additonal LiX packed in a few 2^{nd} -layer dual-modules to adjust N₂ removal.

O2 Cost Sensitivity Analysis - LiX

LiX-Polymer Fiber Spinning Process

LiX Fiber with Cheap Polymer P-1

LiX/P-1 performs equivalent to LiX/Matrimid ٠

LiX Fiber with Cheap Polymer P-2

 LiX/P-2 underperforms, even after initial cross-linking attempt

LiX Fiber with Hybrid Polymers

- Form LiX fiber w/ hybrid polymer binders: P-2 + Matrimid
- Change ratio of P-2 : Matrimid

- LiX loading ~ 80 wt%, Total polymer: 20 wt%
- P-2 : Matrimid = 50 : 50

LiX/(P-2 + Matrimid) performs better than LiX/Matrimid

LiX Fiber with Improved & Cheap Hybrid Polymers

- Total polymer content in the fibers: 15 wt%
- Matrimid content in polymers: 10 wt%
- N₂ uptake in LiX can be tuned/maintained with little amount of Matrimid blending

Hybrid polyimides achieve high performance with minimum cost penalty

Summary

- Multiple LiX-polymer fibers were successfully prepared in the lab with LiX ≥ 80 wt%.
- Both LiX/P-1 and LiX/(P-2 + Matrimid) fibers show promising N_2 uptakes and thermal stability.
- Hybrid polymer binders with small addition of Matrimid improves performance, with potential to significantly reduce the overall fiber cost.

Future Work

- Fabricate continuous LiX fiber at production scale and perform detailed characterization
- Conduct RPSA testing with improved fiber bundles
- Demonstrate 2-layer design with LiX fibers and CMS
- Perform process design and TEA

Project Schedule

Project Timeline			Months from Project Start Date																							
	Start Date	End Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Task 1.0 - Project Management and Planning																										-
Subtask 1.1 Project Management Plan	10/1/2023	9/30/2025																								
Subtask 1.2 Technology Maturation Plan	10/1/2023	12/30/2023																								
Subtask 1.3 Diversity, Equity, Inclusion and Accessibility (DEIA) Plan	10/1/2023	12/30/2023																								
Milestone 1: Initial TMP within 90 days of Project Start		12/30/2023			★																					
Milestone 2: Update DEIA Plan within 90 days of Project Start		12/30/2023			★																					
Task 2.0 – Fiber Structured Adsorbent Optimization																										
Subtask 2.1: Optimization of the Fiber Structured Adsorbent Formulation	10/10/2023	1/31/2024																								
Subtask 2.2: Optimization of the Fiber Packing and Lab RPSA Test Conditions	11/10/2023	6/30/2024																								
Subtask 2.3: Synthesis of Selected Fiber Structured Adsorbents for Prototype Testing	1/10/2024	9/30/2024																								
Task 3.0 – Design and Fabrication of Modular RPSA Prototype System																										
Subtask 3.1. Complete Detailed Design Specifications, P&ID, Control Specifications	4/10/2024	7/30/2024																								
Subtask 3.2. RPSA System Design	4/10/2024	7/30/2024																								
Subtask 3.3. Process Hazard Analysis, Instrument List, and Equipment and Fabricator	6/1/2024	12/31/2024																								
Subtask 3.4. Equipment procurement, component fabrication, prototype installation	6/1/2024	12/31/2024																								
Task 4.0 – Prototype Unit Commissioning and Testing																										ł
Subtask 4.1. Prototype Unit Commissioning and PSSR	10/1/2024	2/28/2025																								
Subtask 4.2. Parametric Testing with Integrated Prototype Unit	10/1/2024	3/30/2025																								
Subtask 4.3. Extended Testing with RPSA Prototype Unit	10/1/2024	6/30/2025																								
<u>Milestone 3</u> : $> 95\%$ O ₂ purity with > 100 hours of RPSA cycles		6/30/2025																					★			
Task 5 - Process Design and Analysis																										ł
Task 5 – Process Design and Analysis	2/1/2025	6/30/2025																								ł
Task 6 - Techno-Economic and Life Cycle Analysis																										l
Subtask 6.1 – Process Model Update	3/1/2025	6/30/2025																								ł
Subtask 6.2 – Techno-Economic Analysis (TEA)	5/1/2025	9/30/2025																								
Milestone 4: Final TEA/TMP within 90 days of Project Compeletion		9/30/2025																								\star

Acknowledgement

- DOE NETL
 - DOE SBIR
- Program Manager
 - John Homer
- THANKS FOR YOUR ATTENTION

