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Project Overview
Period of 
Performance 10/01/2023 – 09/30/2025

Project Funding DOE: $1,250 K                        Cost-Share: $312.5 K

Overall Project Goal Development of a novel RPSA process for high-purity 
(>95%) oxygen production at <$45/ton.

Project Participants
Susteon Inc 
Georgia Institute of Technology
Generon

DOE/NETL Project 
Manager Mr. John P. Homer 
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Technology Background – High Purity H2 
• DOE/NETL is targeting 

clean H2 production 
through biomass/waste 
gasification, with ultimate 
cost goal of ≤ $1/kg H2

• High-purity oxygen allows 
higher H2 productivity

• Critical to produce high-purity 
(>95%) oxygen at low cost

Wang, Z. et al.; Fuel 2015, 150, 386
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High Purity O2 through Commercial ASU 

• Flexible and modular 5 MW biomass 
gasification systems typically require 
50 ton/day (TPD) of oxygen 

• DOE Requirement for O2

• > 95% purity, < $45-50/ton

• Cryogenic air separation unit (ASU) 
does not meet the requirement
• Can produce 99+% pure O2

• Typical Size: 1000 – 4000 TPD
• Oxygen costs: $33/ton to $70/ton, 

depending on scale and site
• Does not scale down cost-

effectively below 200 ton/day
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O2 Production through Commercial VPSA 

• Commercial VPSA is based on LiX zeolite beads 
• Can only produce ~90% purity O2 (due to 

presence of 1% Ar in air)
• Typical size: 5 – 250 TPD
• Oxygen cost $50/ton to $80/ton
• Power consumption contributes to ~ 50% of O2 

production cost with high △P
• Poor operational reliability

This project:

Fiber-adsorbents

LiX bound with dense clay LiX bound in porous polymer
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Technical Approach Step#1 – 
Fiber RPSA

Fabricate zeolite adsorbent in fiber form

• Reduce the pressure drop, attrition, and dusting of the current 
beaded bed system by using fibrous-structured adsorbent

• Order of magnitude lower △P  
• Reduce the bed size factor (BSF) by employing rapid cycles in 

PSA using fiber structured beds
• >30% lower BSF (equivalent to higher throughput)  

• Maximize adsorption capacity and rate through optimized fiber 
manufacturing with suitable polymer binder

Sujan, A. R. et al.; Ind. Eng. Chem. Res. 2018, 57, 11757.

Performances Typical Beads Target Fibers

Bed Size Factor - BSF
 (lb of adsorber/ton O2/day) 600 400

Recovery (%) 55 65

Spec Power (kWh/ton) 250 210
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Preliminary Lab Fiber RPSA Testing

• Fully automated rapid cycles (< 20 
seconds)

• Two-bed system operates at cyclic 
steady-state 

Feed 
Gas

O2 
Target

O2 Purity 
Achieved

Bed Size Factor 
(lb/TPD)

O2 
Recovery

Dry Air > 90% 90.2% 360 67.4%
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Technical Approach Step#2 – High 
Purity O2 through 2-Layer Fiber RPSA

• Introduce a 2nd-layer adsorbent, also in fiber form, specifically for Ar-
removal as further purification of ~90%  95+% O2  

• Explored AgX zeolite as the known Ar-selective adsorbent
• Novel carbon molecular sieve (CMS) showed surprisingly good Ar-selectivity 

• CMS can be made from readily available cellulose

Layer 1
N2 Ads.

>95% Oxygen 
ProductAir

Layer 2
Ar Ads.

Adsorption
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Preliminary 2nd-Layer RPSA Testing

Additonal LiX packed in a few 2nd-layer 
dual-modules to adjust N2 removal.

Feed Gas
 inlet

Product 
outlet

Gas outlet 
during 
activation.

LiX Fiber
Module

CMS 
Fiber 
Module

• This approach provides a pathway to produce 
>95% purity O2

• Critical to manufacture high-performance fiber 
adsorbents at low-cost

*SG: 90% O2, 6% N2, 4% Ar 

Module 
Type

Feed 
Gas *

Pressure 
Gas **

O2 
Target

O2 
Purity 
Actual

Bed Size 
Factor 

(lb/TPD)

O2 Rec.

LiX+AgX SG SG > 95% 93.5% -- --

LiX+CMS SG SG > 95% 94.8% 111 59.0%

AgX SG O2 > 95% 96.9% 68 67.4%

CMS SG O2 > 95% 96.4% 25 80.9%

LiX+CMS SG O2 > 95% 98.4% 141 58.3%

**Pure O2 pressurization to help counter lab system void
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O2 Cost Sensitivity Analysis - LiX

0.9

0.6

165

0.65

10

0.7

0.4

495

0.55

40

$32 $34 $36 $38 $40 $42 $44 $46 $48

Active LiX

Voidage

BSF

Recovery

Fiber Cost ($/lb)

Breakeven Oxygen Production Cost ($/Tonne) 
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LiX-Polymer Fiber Spinning Process

• Matrimid proven to be effective polymer binder

• Matrimid ~ $300/lb, results in high O2 cost

Criteria for Suitable Polymer Binder
• Good binding strength with minimum amount
• High thermal stability up to 350°C 
• High porosity to allow high gas adsorption
• Cheap and readily available

Tg ~ 330 °C

Sujan, A. R. et al.; Ind. Eng. Chem. Res. 2018, 57, 11757.
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LiX Fiber with Cheap Polymer P-1

P-1, Tg ~ 230 °C

• LiX/P-1 performs equivalent to LiX/Matrimid

30 °C Isotherms
(350 °C activation)

TGA Curve of LiX/P-1
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LiX Fiber with Cheap Polymer P-2

200 °C activation

• LiX/P-2 underperforms, even after 
initial cross-linking attempt

Slow activation at 350°C

P-2, Tg ~ 210 °C
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LiX Fiber with Hybrid Polymers

• Form LiX fiber w/ hybrid 
polymer binders: P-2 + Matrimid

• Change ratio of P-2 : Matrimid
30 °C Isotherms 
(350 °C activation)

• LiX loading ~ 80 wt%, Total 
polymer: 20 wt%

• P-2 : Matrimid = 50 : 50 

LiX/(P-2 + Matrimid) performs better than LiX/Matrimid 



16

LiX Fiber with Improved & Cheap 
Hybrid Polymers

• Total polymer content in the fibers: 15 wt% 
• Matrimid content in polymers: 10 wt% 
• N2 uptake in LiX can be tuned/maintained 

with little amount of Matrimid blending

Hybrid polyimides achieve high 
performance with minimum cost 
penalty



17

Summary
• Multiple LiX-polymer fibers were successfully prepared in the lab 

with LiX ≥ 80 wt%.

• Both LiX/P-1 and LiX/(P-2 + Matrimid) fibers show promising N2 
uptakes and thermal stability.

• Hybrid polymer binders with small addition of Matrimid improves 
performance, with potential to significantly reduce the overall 
fiber cost.

Future Work
• Fabricate continuous LiX fiber at production scale and perform 

detailed characterization

• Conduct RPSA testing with improved fiber bundles

• Demonstrate 2-layer design with LiX fibers and CMS

• Perform process design and TEA
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Project Schedule

Start Date End Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Task 1.0 - Project Management and Planning

Subtask 1.1 Project Management Plan 10/1/2023 9/30/2025
Subtask 1.2 Technology Maturation Plan 10/1/2023 12/30/2023
Subtask 1.3 Diversity, Equity, Inclusion and Accessibility (DEIA) Plan 10/1/2023 12/30/2023

Milestone 1: Initial TMP within 90 days of Project Start 12/30/2023
Milestone 2: Update DEIA Plan within 90 days of Project Start 12/30/2023
Task 2.0 –  Fiber Structured Adsorbent Optimization

Subtask 2.1: Optimization of the Fiber Structured Adsorbent Formulation 10/10/2023 1/31/2024
Subtask 2.2: Optimization of the Fiber Packing and Lab RPSA Test Conditions 11/10/2023 6/30/2024
Subtask 2.3: Synthesis of Selected Fiber Structured Adsorbents for Prototype Testing 1/10/2024 9/30/2024

Task 3.0 –  Design and Fabrication of Modular RPSA Prototype System
Subtask 3.1. Complete Detailed Design Specifications, P&ID, Control Specifications 4/10/2024 7/30/2024
Subtask 3.2. RPSA System Design 4/10/2024 7/30/2024
Subtask 3.3. Process Hazard Analysis, Instrument List, and Equipment and Fabricator 6/1/2024 12/31/2024
Subtask 3.4. Equipment procurement, component fabrication, prototype installation 6/1/2024 12/31/2024

Task 4.0 – Prototype Unit Commissioning and Testing
Subtask 4.1. Prototype Unit Commissioning and PSSR 10/1/2024 2/28/2025
Subtask 4.2. Parametric Testing with Integrated Prototype Unit 10/1/2024 3/30/2025
Subtask 4.3. Extended Testing with RPSA Prototype Unit 10/1/2024 6/30/2025

Milestone 3: > 95% O2 purity with > 100 hours of RPSA cycles 6/30/2025

Task 5 -  Process Design and Analysis
Task  5 – Process Design and Analysis 2/1/2025 6/30/2025

Task 6 -  Techno-Economic and Life Cycle Analysis
Subtask 6.1 – Process Model Update 3/1/2025 6/30/2025
Subtask 6.2 – Techno-Economic Analysis (TEA) 5/1/2025 9/30/2025

Milestone 4: Final TEA/TMP within 90 days of Project Compeletion 9/30/2025

Project Timeline Months from Project Start Date
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