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Project Overview

Y Award Name: High Selectivity and Throughput Carbon
Molecular Sieve Hollow Fiber Membrane-Based
Modular Air Separation Unit for Producing High

Purity O,
Y Award Number: FE-1049-21-FY21
Y Current Project Period: BP4: 06/2023 - 12/2024
Y Project Manager: Katelyn Ballard
% Overall Program Goal: Development of high flux polybenzimidazole-

derived carbon molecular sieve hollow fiber
membranes having O,/N, selectivity > 15 for high
purity O, production to meet the needs of a
modular 1-5 MWe gasification system
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Air Separations

% Cryogenic distillation is the industrially preferred technique for large-scale,
high purity O, production
> Cryogenic technology is energy inefficient at small scale
> Scale dependent estimated specific energy consumption 23 to 63 kJ/mol

Y Membrane-based air separation processes have advantages over competing

100

technologies > Tailorable output stream conditions
> Inherent modularity & dramatically (T&P) to match downstream process
reduced footprint > Improved energy economics
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O, Selective Membrane Material Needs

L, Membrane materials: current state-of-the-art

> O,/N, selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS)
membranes achieved
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Membrane Material and Industrial Platform
Development
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Y CMS membrane formation is multi-step process

Polymer Derived CMS Membranes %:E)_CF

Commercial Base Polymer CMS
Membranes
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Tailoring Separation Performance: Pyrolysis Temperature
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Ideal Separation Performance

Estimated O,

Sample O, permeance, GPU 0,/N, permeability [Barrer]
PBI 0.204 1.02 0.06

CMS-580 0.303 8.44 8.48

CMS-650 3.964 8.47 99

CMS-750 0.782 @G 16.4

CMS-850 42.3 0.90 550

Seong & Singh et.al., Carbon 192, 71-83, 2022
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Achieving High Permeance
& Challenge: Mitigate HFM porous support structure collapse during pyrolysis

Whole Fiber One Side

Base PBI-HFM

1st Gen CMS

2"d Gen CMS

100 pm \-"T‘r— = 20 pm

US Patent Application 18/170,722
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Tailoring Separation Performance: Pyrolysis Atmosphere

Y Pyrolysis under inert flowing gas is more practical for industrial deployment

> Inert gas pyrolysis produced PBI-CMS HFMs having higher O, permeance with similar
selectivity as compared to vacuum pyrolysis

Pyrolysis Ideal Permeance, GPU Ideal Selectivity
Sample
Atmosphere He o, CO, Ar N, He/N, O,/N, 0O,/Ar CO,/N,
Membrane 1 Vacuum 179 87 14 13 14 6.7 6.2
Membrane 2 Inert (N,) Gas Flow 517 159 835 27 23 22 6.9 5.9 36
Membrane 3 Inert (N,) Gas Flow 648 265 1350 41 40 16 6.7 6.5 34

> CMS-PBI HFM fabricated under
vacuum had thicker selective
layer as compared to membrane
fabricated in inert flowing gas
resulting in higher O,
permeance
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PBI-CMS HFM: Pressure Independent Separation Performance

% Pressure independent separation performance indicate defect-free HFMs
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Scale-up - Demonstrating Industrial Feasibility

& Efforts focused on the translational of fabrication methods (post-spinning
crosslinking and pyrolysis) for fabrication of PBI-CMS multi-fiber modules

Batch Process Pyrolysis
= Few fiber strand X-linked in
vial under slow agitation -
Single fiber

)

—)

Multi-fiber pyrolysis
under industry
relevant inert gas flow

Flow-Through Process
» Simultaneous processing of
fiber bundle
»  X-linking performed as part of
solvent exchange process
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Strong PBI-CMS HFMs - Improved Selectivity
Y Successfully fabricated PBI-CMS HFMs with high pure gas O,/N, selectivity

Pyrolysis Permeance, GPU Selectivity
Sample
Atmosphere He o, N, He/N, O,/N,

Membrane 1 Inert (N,) Gas Flow 722 65.5 23 132 12.0

> Combination of slightly thicker selective layer (SL), and optimized and scalable x-linking
method results in further reducing defects and improved selectivity

> Fiber spinning process slightly
changed to increase SL thickness
of the base PBI HFMs

> PBI-CMS HFMs having ~ 0.6 pm
SL were produced as compared
to ~ 0.3 um in previous PBI-CMS
HFMs.
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Unique Morphology of PBI CMS HFM w.r.t Pyrolysis Temperature
Y Impact of pyrolysis temperature (550-750 °C)on PBI HFM morphology

5 P
[
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Pore tightening with increase in temperature

Pyrolysis Selective layer

iy eraliis { disiel e (i) > An extraordinarily thinner selective layer in the
550 142.0 +17 CMSMs was achieved, ranging from 0.14- 0.54 um
600 211.8 + 70 > The bottleneck of regulating selective layer

thickness below 1um, facilitated by DBX
650 310.7£10 crosslinking of PBI HFM followed by controlled
700 434.0 + 29 pyrolysis procedure, was demonstrated
750 539.8 £ 28
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Ideal O,/N, Performance Summary

Y Impact of pyrolysis temperature (550-750 °C)on O,/N, separation performance
was evaluated.

Degassed under vacuum at 180 ° C
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1° > Selectivity improved significantly (~4.5x) with
° _ increase in pyrolysis temperature from 550 to 650 ° C
: \ while a sudden drop (~90%) in selectivity was
o— :\: 1o observed at 750 °C when compared to 700 °C.

— T » Optimum pyrolysis temperature was found to be
%90 o0 050 700 70 600-650 ° C to achieve high O,/N, separation.
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Ideal O,/N, Performance Summary
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Improved Mechanical Robustness

Y, While PBI derived HFMs demonstrated improved mechanical robustness, but
multi-fiber module fabrication presented challenges

> High temperature epoxies are rigid
which caused significant stress at
epoxy-fiber causing breakage.

Mechanically We

Interface

% Novel Approach:

> Development of novel HFM with
extremely high mechanical strength

allows to carry air separation at high

temperature and flow.

Mechanically Strong
Interface
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Mixed O0,/N, Performance Summary

Y High O,/ N, selectivity (~15) demonstrated for industry representative multi-
fiber module
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> The O,/N, separation performance improved at higher temperature

> Based on pure gas data HFMs with thinner selective layer and optimized crosslinking will lead to higher O,
permeances.
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Mixed O0,/N, Performance Summary

Y High O,/ N, selectivity (~15) demonstrated for industry representative multi-
fiber module
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> The O,/N, separation performance improved at higher temperature

> Based on pure gas data HFMs with thinner selective layer and optimized crosslinking will lead to higher O,
permeances.
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Collaboration with Applied Membrane Technology (AMT)

» Collaboration with AMT was established.

> Three modules (two polymer and one CMS)
with 5-10 fibers each were prepared by AMT

» The module dimensions: 0.375” D X 5.75” L

> The initial batches were test and optimize the
epoxy, fiber length and evaluation.

> High temperature epoxy (~230 ° C) seems
promising

‘:i
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> New batch is on its way to AMT.

EP42HT-2 Product Information

Two component, room temperature curing epoxy compound

Key Features
» Heat, chemical and steam resistance
»« Cures at ambient or elevated temperatures

» Can be used for bonding, sealing, coating, casting &

potting applicatio
» Serviceable frof -60°F to +450°F
=
%@ Los Alamos
<

T YA =375
NATIONAL LABORATORY /Z/’v‘ W‘i




Overall Gas Separation Performance

Y PBI CMS HFM was evaluated for H,/ CO, separation at 180 °C and 50 psi for

different H, (50-75%) mole fraction.
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Process Design and Techno-Economic Analysis
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Process Modeling Platform Development

Y Developed hollow fiber membrane model and integrated with Aspen Plus
process simulation software for air separation process development

Shell-Side Flow Species Concentration
Sh = 0.68 Re'/25c1/3

h; (PR-p}
Ji = (RT ) Sh = E
D;

3 ]P[.(P is —P EP) L _ —Ea,
= = ] Py =A;exp RoqsT

Pre-exponential factor and activation energy
are from experimental measurements

ore-Side Flow

Sweep

Permeate
(Optional)

(0,)

Hollow Fiber Retentate

(N, enriched)

Membrane Module
YA [y
AR =4
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Techno-economic Analysis -2-Stage Membrane Process (Vacuum)

Membrane module

Input values

HF Diameter, um

400

Wall Thickness, pm 30
Selective Layer Thickness, um 1.0 —,
O, permeance, GPU 551300
0,/N, selectivity of the membrane 10430
Module Diameter, m 0.25
Module Length, m 0.4-1
Surface Area Density, m?/m? 3000
Membrane cost, $/m? 50-100
Electricity cost, $/kWh 0.06-0.1
Process Parameters Input values
O, Production Rate, TPD (1-5 MW) 10
Annual capacity factor 90%
Indirect cost factor 53%
Aromatization factor (FCR) 7%

Life of equipment, y 10

=
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Membrane Performance Controls O, Production Cost

% Energy consumption and cost of O, production calculated for membrane process
as a function of O, permeance and O,/N, selectivity

> Modelled fluid flow dynamics and operating conditions to achieve minimize O,
production cost for each permeance-selectivity combination
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TEA-3-Stage Membrane Process (Compression)
% Preliminary TEA: 3-stage process for > 90% O, production

Feed compression process Input values
Hollow fiber PBI O, Production Rate, TPD 10
Compressor Compressor membrane module
(powered by (powered by motor) Cooler Number of Membrane Stages 2-3
Air filters turbine) 5 bar 5 bar S bar, .
- 330 °C 35°C T 1 Stage Inlet volume of air, Kg/s 1-1.1
1 bar € . .
2500 Heat Exchanger Retentate 1por Pressure of inlet air, bar 5-9
1 bar 35°C °
P _ 4.95 bar 35°C Permeate Stage Temp erature’ C 35
- 1 bar ~ 230°C
53°C l) membrane modiile 100 } ] } | } ! ; } ; }
Compressor Cooler
Turbi
urbine . 274 Stage
' & - 90 O,/N, Selectivity _|_
Heat Exchanger o
S 7
;g) 80 - Base Case L
Turbine membrane module s + +
Compressor Cooler Oxygen B
90% purity | 3" Stage '§ 07T 10 T
o a 1 15 1
Heat Exchanger S ol ’\.\‘ 20 1
30
Turbine T
50 Membrane Cost = $100 rrlr2 . .

} ' '
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Achievements

v Mitigation of structural collapse during pyrolysis process

v Thinner selective layer (<1 um) was achieved

v' Project goal of high O,/N, selectivity (~15) was achieved

v" Demonstrated scaled-up process to commercialize CMS HFMs

v Developed CMS HFMs with extremely high mechanical strength

v High temperature epoxy was found

" R 'A L
1@ Los Alamos INVSE




Project Milestones (BP - 4)

BP ID
4 M1
4 M2
4 R2
4 R7

1% Los Alamos

Task
#

3.0

2.0

2.0

3.0

Description

Develop industry representative multi-fiber
module and measure O, permeance and
selectivity

Demonstrate achievement of project goal of
high purity (= 90%) O, production in simulated
multistage membrane process.

Report a plan to DOE to reach a 1-micron thick
selective layer and demonstrate that the
permeance can reach 100 gas permeation units
(GPU) while maintaining selectivity of at least
15.

Perform organics testing to determine the long-
term adverse impacts on membrane stability
and performance.

Due Date

12/31/2024

12/31/2024

12/31/2024

12/31/2024

Status

In-progress

In-progress

In-progress

In-progress
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Project Team

Project Manager: Katelyn Ballard (current) and Evelyn Lopez (former)

Disclaimer

% Los Alamos National Laboratory The submitted materials have been authored by an employee or
.. . ) employees of Triad National Security, LLC (Triad) under contract

> Ra]mder P. Sll’lgh (PT’O]BCt L@&ld) with the U.S. Department of Energy/National Nuclear Security
Administration (DOE/NNSA). Accordingly, the U.S. Government

> Harshul V. Thakkar (Lead — Evgluutions) retains an irrevocable, nonexclusive, royalty-free license to publish,
translate, reproduce, use, or dispose of the published form of the

> Prashant Sharan (L(Z&ld _ TEA) work and to authorize others to do the same for U.S. Government
purposes. This report was prepared as an account of work

: sponsored by an agency of the U.S. Government. Neither Triad

> MlChaEI Dugas (GRA) National Security, LLC, the U.S. Government nor any agency

. . . thereof, nor any of their employees make any warranty, express or

> Sarah DaVlS (POStbaCh —Membmne Chamcterzzatzon) implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,

> Shraavya Rao (POStdOC - start date: 3rd IUTZE) apparatus, product, or process disclosed, or represent that its use

. would not infringe privately owned rights. Reference herein to any

Q{> Previous Team Members specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily

> Ibtida Sultana ([ntel) constitute or imply its endorsement, recommendation, or favoring by
Triad National Security, LLC, the U.S. Government, or any agency

> ]ongGeun Seong (Samsung) thereof. The views and opinions of authors expressed herein do not

necessarily state or reflect those of Triad National Security, LLC, the
U.S. Government, or any agency thereof.

> Jeremy Lewis (Plug Power)
> Kamron Brinkerhoff (LANL)
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