

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O₂

FE-1049-21-FY21

Harshul Thakkar, Rajinder Singh Materials Physics and Applications Division Los Alamos National Laboratory

> Project Review Meeting DOE – Fossil Energy/NETL April 25th, 2024

Project Overview

Section 4 Award Name:

- **Award Number:**
- **& Current Project Period:**
- Scherk Project Manager:
- Solution Solution Solution Solution Solution Solution Statement Statement Solution Statement Solution Statement Sta

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O_2 FE-1049-21-FY21 BP4: 06/2023 – 12/2024 Katelyn Ballard Development of high flux polybenzimidazolederived carbon molecular sieve hollow fiber membranes having O_2/N_2 selectivity > 15 for high purity O₂ production to meet the needs of a modular 1-5 MWe gasification system

Air Separations

- Scryogenic distillation is *the* industrially preferred technique for large-scale, high purity O₂ production
 - > Cryogenic technology is energy inefficient at small scale
 - Scale dependent estimated specific energy consumption 23 to 63 kJ/mol
- Solution Membrane-based air separation processes have advantages over competing Tailorable output stream conditions technologies
 - > Inherent modularity & dramatically reduced footprint

(T&P) to match downstream process

Ref: Air Products Inc. & Air Liquide Inc.

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294

O₂ Selective Membrane Material Needs

Solution Membrane materials: current state-of-the-art

O₂/N₂ selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS) membranes achieved

Membrane Material and Industrial Platform Development

Tailoring Separation Performance: Pyrolysis Temperature

Concelo	Ideal Separation Pe	Estimated O ₂	
Sample	O ₂ permeance, GPU	O_2/N_2	permeability [Barrer]
PBI	0.204	1.02	0.06
CMS-580	0.303	8.44	8.48
CMS-650	3.964	8.47	99
CMS-750	0.782	13.7	16.4
CMS-850	42.3	0.90	550

Seong & Singh et.al., Carbon 192, 71-83, 2022

Achieving High Permeance

Schallenge: Mitigate HFM porous support structure collapse during pyrolysis

US Patent Application 18/170,722

NNSA

Tailoring Separation Performance: Pyrolysis Atmosphere

- **Solution** Series Serie
 - Inert gas pyrolysis produced PBI-CMS HFMs having higher O₂ permeance with similar selectivity as compared to vacuum pyrolysis

Community	Pyrolysis		Ideal Permeance, GPU			Ideal Selectivity				
Sample	Atmosphere	Не	02	CO ₂	Ar	N_2	He/N ₂	O_2/N_2	O ₂ /Ar	CO ₂ /N ₂
Membrane 1	Vacuum	179	87		14	13	14	6.7	6.2	
Membrane 2	Inert (N ₂) Gas Flow	517	159	835	27	23	22	6.9	5.9	36
Membrane 3	Inert (N ₂) Gas Flow	648	265	1350	41	40	16	6.7	6.5	34

 CMS-PBI HFM fabricated under vacuum had thicker selective layer as compared to membrane fabricated in inert flowing gas resulting in higher O₂ permeance

💫 Los Alamos

PBI-CMS HFM: Pressure Independent Separation Performance

Solution Separation performance indicate defect-free HFMs

- Symmetric (BP1)
- Asymmetric (BP2)
- Asymmetric (BP3)
- Understand the influence of fabrication process parameters and develop performancefabrication parameter-property correlations

Scale-up – Demonstrating Industrial Feasibility

Efforts focused on the translational of fabrication methods (post-spinning crosslinking and pyrolysis) for fabrication of PBI-CMS multi-fiber modules

Batch Process

Few fiber strand X-linked in vial under slow agitation

Flow-Through Process

- Simultaneous processing of fiber bundle
- X-linking performed as part of solvent exchange process

Pyrolysis

Single fiber

Multi-fiber pyrolysis under industry relevant inert gas flow

Strong PBI-CMS HFMs – Improved Selectivity

Successfully fabricated PBI-CMS HFMs with high pure gas O_2/N_2 selectivity

Sample	Pyrolysis	Permeance, GPU			Selectivity		
	Atmosphere	He	02	N ₂	He/N ₂	O_2/N_2	
	Membrane 1	Inert (N_2) Gas Flow	722	65.5	23	132	12.0

Combination of slightly thicker selective layer (SL), and optimized and scalable x-linking method results in further reducing defects and improved selectivity

- Fiber spinning process slightly changed to increase SL thickness of the base PBI HFMs
- PBI-CMS HFMs having ~ 0.6 µm SL were produced as compared to ~ 0.3 µm in previous PBI-CMS HFMs.

Disclosure under review

Unique Morphology of PBI CMS HFM w.r.t Pyrolysis Temperature

✤ Impact of pyrolysis temperature (550-750 °C) on PBI HFM morphology

Pore tightening with increase in temperature

Pyrolysis Temperature (°C)	Selective layer thickness (nm)
550	142.0 ± 17
600	211.8 ± 70
650	310.7 ± 10
700	434.0 ± 29
750	539.8 ± 28

- An extraordinarily thinner selective layer in the CMSMs was achieved, ranging from 0.14- 0.54 μm
- The bottleneck of regulating selective layer thickness below 1µm, facilitated by DBX crosslinking of PBI HFM followed by controlled pyrolysis procedure, was demonstrated

Ideal O₂/N₂ Performance Summary

Degassed under vacuum at 180 ° C 50 15 -Image: -Im 40 10 Gas Permeance (GPU) O₂/N₂ Selectivity 30 10 0 0 550 600 650 700 750 Pyrolysis temperature (°C)

- Selectivity improved significantly (~4.5x) with increase in pyrolysis temperature from 550 to 650 ° C while a sudden drop (~90%) in selectivity was observed at 750 °C when compared to 700 °C.
- Optimum pyrolysis temperature was found to be 600-650 ° C to achieve high O₂/N₂ separation.

Ideal O₂/N₂ Performance Summary

Improved Mechanical Robustness

- While PBI derived HFMs demonstrated improved mechanical robustness, but multi-fiber module fabrication presented challenges
 - High temperature epoxies are rigid which caused significant stress at epoxy-fiber causing breakage.

Novel Approach:

Development of novel HFM with
extremely high mechanical strength
allows to carry air separation at high
temperature and flow.

Disclosure under review

Mixed O₂/N₂ Performance Summary

✤ High O₂/N₂ selectivity (~15) demonstrated for industry representative multifiber module

- > The O_2/N_2 separation performance improved at higher temperature
- Based on pure gas data HFMs with thinner selective layer and optimized crosslinking will lead to higher O₂ permeances.

Mixed O₂/N₂ Performance Summary

✤ High O₂/N₂ selectivity (~15) demonstrated for industry representative multifiber module

- > The O_2/N_2 separation performance improved at higher temperature
- Based on pure gas data HFMs with thinner selective layer and optimized crosslinking will lead to higher O₂ permeances.

Collaboration with Applied Membrane Technology (AMT)

- > Collaboration with AMT was established.
- Three modules (two polymer and one CMS) with 5-10 fibers each were prepared by AMT
- The module dimensions: 0.375" D X 5.75" L
- The initial batches were test and optimize the epoxy, fiber length and evaluation.
- High temperature epoxy (~230 ° C) seems promising
- > New batch is on its way to AMT.

EP42HT-2 Product Information Two component, room temperature curing epoxy compound

Key Features

- Heat, chemical and steam resistance
- Cures at ambient or elevated temperatures
- Can be used for bonding, sealing, coating, casting & potting applications
- Serviceable from -60°F to +450°F

Overall Gas Separation Performance

♦ PBI CMS HFM was evaluated for H₂/CO₂ separation at 180 °C and 50 psi for different H₂ (50-75%) mole fraction.

- Superior H₂/CO₂ separation performance with ~50 selectivity and >175 GPU was achieved, resulting in high H₂ purity (~99%)
- Membrane can be further fine tuned to further enhance the purity and meet industrial standards (99.99%).

Process Design and Techno-Economic Analysis

Process Modeling Platform Development

Solution Developed hollow fiber membrane model and integrated with Aspen Plus process simulation software for air separation process development

Techno-economic Analysis –2-Stage Membrane Process (Vacuum)

Membrane module	Input values	Blower Membrane 1
HF Diameter, μm	400	Retentate
Wall Thickness, µm	30	
Selective Layer Thickness, µm	1.0	
O ₂ permeance, GPU	55- 300	
O_2/N_2 selectivity of the membrane	10.30	Cooling
Module Diameter, m	0.25	
Module Length, m	0.4-1	
Surface Area Density, m ² /m ³	3000	→ Mean cryogenic cost
Membrane cost, \$/m ²	50-100	$\longrightarrow 80 - Membrane cost ($100/m2)$
Electricity cost, \$/kWh	0.06-0.1	
Process Parameters	Input values	
O ₂ Production Rate, TPD (1-5 MW)	10	
Annual capacity factor	90%	
Indirect cost factor	53%	
Aromatization factor (FCR)	7%	
Life of equipment, y	10	
Los Alamos		- 0, purity (%)

NNSX

Membrane Performance Controls O₂ Production Cost

- $\stackrel{<}{\rightarrow}$ Energy consumption and cost of O₂ production calculated for membrane process as a function of O₂ permeance and O₂/N₂ selectivity
 - Modelled fluid flow dynamics and operating conditions to achieve minimize O₂ production cost for each permeance-selectivity combination

TEA-3-Stage Membrane Process (Compression)

✤ Preliminary TEA: 3-stage process for > 90% O₂ production

Achievements

- ✓ Mitigation of structural collapse during pyrolysis process
- ✓ Thinner selective layer (< 1 µm) was achieved
- ✓ Project goal of high O_2/N_2 selectivity (~15) was achieved
- ✓ Demonstrated scaled-up process to commercialize CMS HFMs
- ✓ Developed CMS HFMs with extremely high mechanical strength
- ✓ High temperature epoxy was found

Project Milestones (BP – 4)

BP	ID	Task #	Description	Due Date	Status		
4	M1	3.0	Develop industry representative multi-fiber module and measure O ₂ permeance and selectivity	12/31/2024	in-progress		
4	M2	2.0	Demonstrate achievement of project goal of high purity (\geq 90%) O ₂ production in simulated multistage membrane process.	12/31/2024	in-progress		
4	R2	2.0	Report a plan to DOE to reach a 1-micron thick selective layer and demonstrate that the permeance can reach 100 gas permeation units (GPU) while maintaining selectivity of at least 15.	12/31/2024	in-progress		
4	R7	3.0	Perform organics testing to determine the long- term adverse impacts on membrane stability and performance.	12/31/2024	in-progress		

Project Team

Project Manager: Katelyn Ballard (current) and Evelyn Lopez (former)

b Los Alamos National Laboratory

- Rajinder P. Singh (*Project Lead*)
- Harshul V. Thakkar (*Lead Evaluations*)
- Prashant Sharan (Lead TEA)
- Michael Dugas (GRA)
- Sarah Davis (Postbach Membrane Characterization)
- Shraavya Rao (*Postdoc start date: 3rd June*)
- **Previous Team Members**
 - Ibtida Sultana (Intel)
 - JongGeun Seong (Samsung)
 - Jeremy Lewis (*Plug Power*)
 - Kamron Brinkerhoff (LANL)

Disclaimer

The submitted materials have been authored by an employee or employees of Triad National Security, LLC (Triad) under contract with the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA). Accordingly, the U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish, translate, reproduce, use, or dispose of the published form of the work and to authorize others to do the same for U.S. Government This report was prepared as an account of work purposes. sponsored by an agency of the U.S. Government. Neither Triad National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Triad National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Triad National Security, LLC, the U.S. Government, or any agency thereof.

Thank you!!

