

OVERCOMING TECHNICAL AND **COMMUNITY BARRIERS** TO **ADOPTING GASIFICATION TECHNOLOGIES**

SUMIT CHANDA PhD Research Assistant

AFSANA ITUL PhD Research Assistant

ARELY AVITIA Undergraduate Research Assistant

Utep.edu/aerospace

PROJECT INFORMATION

PROJECT TITLE: "Overcoming Technical and Community Barriers to Adopting Gasification Technologies"

AWARD NO: DE – FE0032237

INVESTIGATORS:

Dr. Ahsan Choudhuri, Email <u>ahsan@utep.edu</u> Dr. Nawshad Arslan Islam, Email <u>mislam12@utep.edu</u>

Dr. Richard Pineda, Email <u>rdpineda@utep.edu</u>

DOE PROJECT MANAGER:

Alison Metz, Email: Alison.Metz@netl.doe.gov

UTEP Business Contact:

Raul Chavez, Email <u>rchavez13@utep.edu</u>

Period of Performance:

07/01/2023 - 06/30/2026

Project Amount:

\$750,000

UTEP Research Centers:

Aerospace Center UTEP Department of Communication

Utep.edu/aerospace

PROJECT INTRODUCTION

Student Team

Sumit Chanda Ph.D. ME Tasnim Anika Ph.D. ME Afsana Itul Ph.D. ME Shafin Ahmad Ph.D. ESE Safwan Shafquat M.S. ME Ahmed Ryen M.S. CS Daniel Reyes B.S. AE Alvarazo Luis B.S. AME Ismail Udoy B.S. ME David Jones B.A. Comm. Arely Avitia B.A. Comm.

PROJECT INTRODUCTION

THE SIGNIFICANCE OF HUMANITIES

HDSTEM

PROJECT OBJECTIVES

Simplified Schematic of the Proposed Gasifier System

Objective 1:

System Configuration Analysis of a 300 KWth Pressurized MSW-Biomass Co-gasifier

Objective 2:

Design, Construction, & Testing of the 300 KWth Pressurized MSW-Biomass Co-gasifier

Objective 3:

Develop Persuasive Messaging and Communication Infrastructure to Educate Policymakers and the Public About the Benefits of Adopting Co-gasification Technologies

TIMELINE

TASK 1 SYSTEM CONFIGURATION ANALYSIS

Figure: Approach to Objective 1

Utep.edu/aerospace

TASK 1.1 SYSTEM ANALYSIS

POTENTIAL ENERGY MATERIALS IN THE PASO DEL NORTE REGION

MODEL ASSUMPTIONS

- NH_3 or H_2S was ignored.
- Steady-state.
- Inert ash
- No pressure or heat losses.
- Air contains 23 wt% O2- 77 wt% N2.
- Four lumped species for tar modeling.

TASK 1.1 SYSTEM ANALYSIS

Material	Textile Waste	Dried Waste	Pyrolyzed Char
Source	Reference	Excel Calculation	Excel Calculation
VM	87.78	87.78	7
Ash	1.05	1.05	6.25
FC	11.17	11.17	86.74
Moisture	0.82	0	0
С	43.37	43.37	70.20
Н	6.18	6.18	5.98
N	1.45	1.45	8.63
0	47.03	47.03	3.43
S	0.92	0.92	5.47

FEEDSTOCK CHARACTERIZATION

Kinetic Model

10	-			K
		a s	S+ (
C. T.	11-14			
Set.	8	Sold and a second	1	-
AR		- Albert		4
		S An	L Asia	10
A CONTRACT	R	NY N	- Carlos	1
ilaniy (States		
10 C 10 C	1000	ALL TO	MAR A.	S.

Equilibrium Model	MSW Type	Moisture	Volatile	Fixed Carbon	Ash	С	Н	0	Ν	S
	Paper	5.95	78.55	7.57	7.93	41.43	6.87	49.83	1.01	0.86
	Textile	6.85	82.37	10.61	0.17	41.19	6.97	50.99	0.01	0.84
	(cotton)									
	Wood	9.31	74.96	15.49	0.24	45.69	7.57	43.84	1.89	1.01
	Plastic (PET)	_	88.61	11.39	-	64.22	4.65	30.53	0.05	0.55

PROJECT PROGRESS TASK 1.1 SYSTEM ANALYSIS

GASIFICATION CYCLE

Figure: Preliminary Process Cycle in Aspen Plus

TASK 1.1 SYSTEM ANALYSIS

KINETIC MODEL

TASK 1.1 SYSTEM ANALYSIS

	Name	Lumped Species
TAR MODELING	Benzene	Benzene
	Phenol	Phenol and Cresols
	Toluene	Toluene, Indene, and xylene
	Naphthalene	Naphthalene, 1+2 - Methylnaphthalene, Acenaphthylene, and Phenanthrene

PYROLYSIS YIELD FROM EMPIRICAL DATA

Product	а	b	С	Component	Basis	Basis Yield
CH₄	-4.341×10^{-5}	10.12×10^{-2}	-51.08	CH ₄	Mass	0.0582071
H_2	1.362×10^{-5}	-2.517×10^{-2}	12.19	H ₂	Mass	0.00564559
CO	-3.524×10^{-5}	9.770×10^{-2}	-24.93	СО	Mass	0.357021
CO ₂	3.958×10^{-5}	-9.126×10^{-2}	64.02	CO ₂	Mass	0.12907
C_2H_4	-6.873×10^{-5}	14.94×10^{-2}	-76.89	C ₂ H ₄	Mass	0.0297956
C_2H_6	8.265×10^{-6}	-2.105×10^{-2}	13.38	C ₂ H ₆	Mass	0.00832825
C ₆ H ₆	-3.134×10^{-5}	7.544×10^{-2}	-42.72	C ₆ H ₆	Mass	0.00656682
C ₇ H _o	-4.539×10^{-6}	0.687×10^{-2}	1.462	C ₇ H ₈	Mass	0.0385119
C _c H _c O	1.508×10^{-5}	-3.662×10^{-2}	22.19	C ₆ H ₆ O	Mass	0.0100009
C ₁₀ H _e	-8.548×10^{-6}	1.882×10^{-2}	-9.851	C ₁₀ H ₈	Mass	0.00310139
H ₂ O	5.157×10^{-5}	-11.86×10^{-2}	84.91	H ₂ O	Mass	0.185847
2 -				Char	Mass	0.167905
Mass yields (Y_0)	of pyrolysis products are	e calculated, as $Y_i = aT^2 + b$	T+c.			

TASK 1.1 SYSTEM ANALYSIS

Reaction	Kinetic Constants		
	К	E _a (KJ/Kmol)	
(1)	8.9 · 10 ⁹	1.8 · 10 ⁵	
(2)	7.9 · 10 ¹⁰	$2.02 \cdot 10^{5}$	
(3)	$5.4 \cdot 10^{7}$	$1.25 \cdot 10^4$	
(4)	$6.55 \cdot 10^{-1}$	$8.02 \cdot 10^4$	
(5)	$1.27 \cdot 10^{7}$	$1.26 \cdot 10^{5}$	
(6)	3.42	$1.3 \cdot 10^4$	
(7)	$2.78 \cdot 10^{-2}$	$1.26\cdot 10^4$	
(8)	$3.00 \cdot 10^{5}$	$1.25 \cdot 10^{5}$	
(9)	3.42	$1.3 \cdot 10^{4}$	
(10)	$1.00 \cdot 10^{7}$	$1.00 \cdot 10^{5}$	
(11)	$1.00 \cdot 10^{7}$	$1.00 \cdot 10^{5}$	
(12)	$1.00 \cdot 10^{14}$	$3.50 \cdot 10^{5}$	

Reaction	Reaction Rate	No
Total oxidation of CO: $CO + 0.5O_2 \rightarrow CO2$	$r = k \cdot e^{\frac{-E_a}{RT}} [CO] [O_2]^{0.25} [H_2O]^{0.5}$	(1)
Partial oxidation of $CH_4: CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2$	$r = k \cdot e^{\frac{-E_a}{RT}} [CH_4]^{0.7} [O_2]^{0.8}$	(2)
Hydrogen oxidation: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	$r = k \cdot e^{\frac{-E_a}{RT}} [H_2][O_2]$	(3)
Partial oxidation of phenol: $C_6H_6O + 4O_2 \rightarrow 6CO + 3H_2O$	$r = k \cdot \mathbf{T} \cdot \mathbf{e} \frac{-\mathbf{E}_{a}}{\mathbf{R}\mathbf{T}} [\mathbf{C}_{6}\mathbf{H}_{6}\mathbf{O}]^{0.5} [\mathbf{O}_{2}]$	(4)
Partial oxidation of benzene: $C_6H_6 + \frac{9}{2}O_2 \rightarrow 6CO + 3H_2O$	$r = k \cdot e^{\frac{-E_a}{RT}} [C_6 H_6]^{0.5} [O_2]$	(5)
Water Gas: $C + H_2 0 \rightleftharpoons C0 + H_2$	$r = k \cdot \mathrm{T.e}^{\frac{-\mathrm{E}_{a}}{\mathrm{RT}}}[\mathrm{C}][\mathrm{H}_{2}\mathrm{O}]$	(6)
Water-gas shift: $CO + H_2O \Rightarrow CO_2 + H_2$	$r = k \cdot e^{\frac{-E_a}{RT}} [CO][H_2O] - \frac{[CO_2][H_2]}{k} k_{eq}$	(7)
Steam reforming: $CH_4 + H_20 \rightleftharpoons C0 + 3H_2$	$r = k \cdot \mathrm{T.e}^{\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}} [\mathrm{CH}_{4}] [\mathrm{H}_{2}\mathrm{O}]$	(8)
Boudouard: $C + CO_2 \rightleftharpoons 2CO$	$r = k \cdot T. e^{\frac{-E_a}{RT}} [C]$	(9)
$C_6H_6O \rightarrow CO + 0.4C_{10}H_8 + 0.15C_6H_6 + 0.1CH_4 + 0.75H_2$	$r = k \cdot \mathrm{T.e}^{\frac{-\mathrm{E}_a}{\mathrm{RT}}} [\mathrm{C}_6 \mathrm{H}_6 \mathrm{O}]$	(10)
$C_6H_6O + 3H_2O \rightarrow 4CO + 0.5C_2H_4 + CH_4 + 3H_2$	$r = k \cdot \mathrm{T.e}^{\frac{-\mathrm{E}_{a}}{\mathrm{RT}}} [\mathrm{C}_{6}\mathrm{H}_{6}\mathrm{O}]$	(11)
$C_{10}H_8 \rightarrow 6.5C + 0.5C_6H_6 + 0.5CH_4 + 1.5H_2$	$r = k \cdot \text{T.e} \frac{-\text{E}_{a}}{\text{RT}} [\text{C}_{10}\text{H}_{8}]^{1.6} [\text{H}_{2}]^{-0.5}$	(12)

TASK 1.1 SYSTEM ANALYSIS

AEROSPACE CENTER

RESULTS FROM KINETIC MODEL

EFFECT OF ER ON SYNGAS PRODUCTION AT 800C

SENSITIVITY OF HEATING VALUE

PROJECT PROGRESS TASK 1.1 SYSTEM ANALYSIS

PROCESS SENSITIVITY ANALYSIS

TASK 1.1 SYSTEM ANALYSIS

EQUILIBRIUM MODEL

Utep.edu/aerospace

RESULTS FROM EQUILIBRIUM APPROACH

TASK 1.1 SYSTEM ANALYSIS

Assumptions

- The combustion chamber is modeled as a reactor in Aspen Plus.
- Full Combustion achieved in the reactor.
- The compressor and turbine efficiency is considered as isentropic.
- No losses in the energy conversion process.

SCHEMATIC DIAGRAM SHOWING THE ENERGY FLOWS THROUGH COMBINED CYCLE:

ASSUMED TURBINE OPERATING PARAMETERS:

Gas turbine					
GT compressor efficiency	Adiabatic efficiency 80.6%				
GT compressor pressure ratio	5/1				
GT expander efficiency	Adiabatic efficiency 90.2%				
GT expander pressure ratio	1/30				
Steam tu	rbine				
HP ST efficiency	Adiabatic efficiency 86.7%				
IP ST efficiency	Adiabatic efficiency 91.7%				
LP ST efficiency	Adiabatic efficiency 92.4%				
HP ST pressure ratio	30/20				
IP ST pressure ratio	10/5				
LP ST pressure ratio	5/1				
Condenser					
Outlet temperature	32°C				
Pressure	1 bar				

POWER CYCLE DEVELOPMENT

Utep.edu/aerospace

PROJECT PROGRESS TASK 1.1 SYSTEM ANALYSIS

TASK 1.1 SYSTEM ANALYSIS

MEA based CCU Model optimization for the developed decentralized IGCC model

Comparison table showing the carbon capture amount **(94.58%)**

Species	Flue Gas In (Kg/hr)	Flue Gas Out (Kg/hr)	Stripper Out (Kg/hr)
MEA	0	1.9	0.2
CO ₂	128,199	6,939	121,259
H ₂ S	8.03	0.01	8.1
H ₂	7,631	7,573	58
CH ₄	1,396	1,394	2
СО	1,354	1,345	8

CCU

TASK 1.1 SYSTEM ANALYSIS

- Material MSW: 2150 Kg/hr, LHV 18MJ/Kg (Equivalent thermal input: 10,800KW)
- Output from turbines: 4733.44 KW

Net Efficiency: 43.8%

Excluded: Energy for the gasification auxiliaries, HeX duties, CCU.

CYCLE EFFICIENCY (INITIAL)

TASK 1.1 SYSTEM ANALYSIS

CRADLE TO GATE LCA FOR 10.8 MWth GASIFICATION PLANT OPERATING FOR 1 HOUR

ASSUMPTIONS:

- The empirical conversion efficiency was considered as 33%.
- The feedstock flowrate was calculated from the total power generated from the plant.

FLOWS:

• Flows were taken from the OpenLCA default library.

IMPACT ASSESSMENT METHODS:

- IPCC 2013 GWP 100a
- Recipe 2016
- Eco Indicator 99

LCA MODELS

TASK 1.1 SYSTEM ANALYSIS

MODEL GRAPH

Utep.edu/aerospace

TASK 1.1 SYSTEM ANALYSIS

LCA RESULTS

https://www.rit.edu/sustainabilityinstitute/blog/what-life-cycle-assessment-lca

TASK 1.4 PRELIMINARY TEA & LCA

OTHER NOTABLE EMISSIONS FROM THE ENERGY CONVERSION PROCESS

Utep.edu/aerospace

TASK 1.4 PRELIMINARY TEA & LCA

FINE PARTICULATE MATTER FORMATION

Contribution	Process	Required amount	Unit	Total result [Kg PM2.5 eq]	Direct contribution [Kg PM2.5 eq]
100.00%	Energy Conversion - US-TX	180000	MJ	285	154
30.30%	Biomass transportation	11000	Kg	85.5	46.2
23.40%	Biomass collection	11000	Kg	65.5	36.03

*Kg PM2.5 = 4.2 deaths per Kg inhaled

TERRESTRIAL ACIDIFICATION

Contribution	Process	Required amount	Unit	Total result [Kg SO ₂ eq]	Direct contribution [Kg SO₂ eq]
100.00%	Energy Conversion - US-TX	180000	MJ	91.94	39.6
14.50%	Biomass transportation	11000	Kg	12.8	7.2
6.99%	Biomass collection	11000	Kg	6.42	3.5

LCA Results

TASK 1.4 PRELIMINARY TEA & LCA

CAPEX

OPEX

Equipment	Cost (million \$)	Equipment	Cost (million \$)	
Gasifier	15-20	Gasifier	0.4-0.6	
Air Separation Unit (ASU)	10-15	Air Separation Unit (ASU)	0.3-0.4	
Gas Cleanup Systems	5-10	Gas Cleanup Systems	0.1-0.2	
Shift Reactors	2-5	Shift Reactors	0.04-0.1	
	2-3	Gas Turbine	0.5-0.8	
Gas Turbine	25-30	Steam Turbine	0.2-0.3	
Steam Turbine	10-15	Heat Recovery Steam Generator	0102	
Heat Recovery Steam Generator	5-10	(HRSG)	0.1-0.2	
(HRSG)	5 10	CO2 Capture System	0.3-0.5	
CO2 Capture System	15-25	Cooling Systems	0 02-0 06	
Cooling Systems	1-3		0.02 0.00	
Control and Instrumentation	5-7	Control and Instrumentation	0.1-0.14	
Scrubber	0.5 - 1	Emission control system	0.01-0.02	

PRELIMINARY TEA

PROJECT PROGRESS TASK 2 TECHNICAL METHOD

Objective 2: Design, Construction & Testing of the 300 kWth Pressurized MSW-Biomass Co-gasifier

- Task 2.1: Identification of System Level Technical Specification and Operating Condition
- Task 2.2: Preliminary Design and Feasibility Analysis
- Task 2.3: Detailed Component Development and Design Analysis
- Task 2.4: Design Documentation, Component Procurement, Fabrication, Assembly and Integration of Sub-systems
- Task 2.5: Gasifier Shake-Down Experimentations
- Task 2.6: Systematically Characterize the Effect of Feedstock Parameters and Operational Conditions on Hydrogen Generation and Pollutant Emission Characteristics
- Task 2.7: Improved TEA and LCA:

Figure: Concept CAD of the Proposed Gasifier

TASK 3.1 INTERDISCIPLINARY COMMUNICATION SEMINAR SERIES

ID No.	Course Description	Course Objectives
A1	'This class develops the abilities of students to communicate science effectively in a variety of real-world contextsand addresses challenges in communicating about topics such as climate change and evolution."	• 'To provide intellectual resources for constructive critical analysis of popular science communication in a variety of real-world settings"

COMMUNICATION SCIENCE CURRICULA

TASK 3.1 INTERDISCIPLINARY COMMUNICATION SEMINAR SERIES

COMMUNICATION WORKBOOK

TASK 3.1 INTERDISCIPLINARY COMMUNICATION SEMINAR SERIES

GLOBAL WARMING

TASK 3.1 INTERDISCIPLINARY COMMUNICATION SEMINAR SERIES

TASK 3.1 INTERDISCIPLINARY COMMUNICATION SEMINAR SERIES

Bi-Weekly Workshops Workbook **Climate Denial** Communication **Global Warming** Science Curricula Arguments

COMMUNICATION WORKSHOPS

Utep.edu/aerospace

TASK 3.3 DEVELOP STRATEGY FOR COMMUNITY OUTREACH

COMMUNITY OUTREACH

COMPLETITION OF HDSTEM TRAINING

COMMUNITY OUTREACH

Utep.edu/aerospace

MILESTONE LOG

Budget	Task/ Subtask	Milestone	Planned	Actual
Period	No.	Description	Completion	Completion
Y1	1	Updated Project Management Plan	07/30/2023	07/30/2023
Y1	1	Kickoff Meeting	09/08/2023	09/08/2023
Y1	1.1	Determine Net Cycle Efficiency	04/30/2024	
Y1	1.1	Determine Operating Conditions	04/30/2024	
Y1	1.2	Gasifier Preliminary Design	07/15/2024	
Y1	1.3	Technology Gap Analysis	07/31/2024	
Y2	2.2	PDR	01/10/2025	
Y2	2.3	CDR	05/16/2025	
Y3	2.4	System Assembly	09/30/2025	
Y3	2.5	Shake-down Test Results	12/31/2025	
Y3	2.6	Operational Results	05/01/2026	
Y3	2.7	TEA and LCA	06/30/2026	
Y3	3.3	Communication to policy makers and public report	06/30/2026	

in aerospace-center-utep
i utep_aerospace_center
i utepaerospacecenter
i utepaerospace

Tel: (915) 747-8252 Fax: (915) 747-5549 Email: aerospacecenter@utep.edu Utep.edu/**aerospace**

ANY QUESTIONS OR SUGGESTIONS?

RESEARCH QUESTION

- Regional **pressurized** waste and biomass **co-gasification (0-30 bar).**
- Digital twin of a 300 KWth fluidized bed gasifier (Pilot Scale)
- Little information on **Pecan shell gasification**.
- IGCC based on **modular gasifiers**.
- Decentralized hydrogen resilience model (Including economic feasibility, LCA).
- **Community informed approach** for project implementation.
- Unlike most gasification research, cycle level optimization focusing on overall **end use and lifecycle**.

SUMMARY

FLOWSHEET

DELIVERABLES

Decision PointSuccess CriteriaDetermination of gasifier operating conditions (1.1.)Determine efficiency and H2 yield as a function of gas pressure, temperature, feed blend ratio, and feed rate.Scaling analysis for the requirements for the 300 kWth gasifier (1.2)System requirements defined for the scaled system.Technology Gap Analysis Review (1.3)Identification of operating conditions, perform characteristics and application issues	sifier ance		
Determination of gasifier operating conditions (1.1.)Determine efficiency and H2 yield as a function of gas pressure, temperature, feed blend ratio, and feed rate.Scaling analysis for the requirements for the 300 kWth gasifier (1.2)System requirements defined for the scaled system.Technology Gap Analysis Review (1.3)Identification of operating conditions, perform 	sifier ance		
conditions (1.1.)pressure, temperature, feed blend ratio, and feed rate.Scaling analysis for the requirementsSystem requirements defined for the scaled system.For the 300 kW _{th} gasifier (1.2)State of the scale o	ance		
Scaling analysis for the requirementsSystem requirements defined for the scaled system.For the 300 kW _{th} gasifier (1.2)Strem requirements defined for the scaled system.Fechnology Gap Analysis Review (1.3)Identificationofoperatingconditions,performCharacteristics and application issuesCharacteristics and application issuesCharacteristics and application issuesCharacteristics and application issues	ance		
For the 300 kW _{th} gasifier (1.2) Fechnology Gap Analysis Review (1.3) Identification of operating conditions, perform characteristics and application issues	ance		
Technology Gap Analysis Review (1.3) Identification of operating conditions, perform characteristics and application issues	ance		
characteristics and application issues			
>DR (2.2) Approval of design approach			
CDR (2.3) Approval of designs of system details	Approval of designs of system details		
System assembly (2.4) Delivery of the gasifier			
Test readiness review (2.5) Approval of test plan for shake-down testing	Approval of test plan for shake-down testing		
Sasifier performance data (2.6) Successful operation			
Test data analysis, TEA and LCA (2.7) Test data review, TEA, LCA outcomes and final report			
Communication Seminar Series and Successful holding of the seminar series and public	and		
trategy development (3.1, 3.4) policymaker engagements			

CHALLENGES

- Current high-yield H₂ technologies for Biomass and MSW gasification are-
 - Supercritical Water Gasifier
 - Plasma Gasifier
- Supercritical Gasifiers are prone to high tar formation
- Both gasifiers involve high capital and operation cost
- Emission control and syngas clean-up due to feedstock variability
- Limited understanding of co-gasification of complex feedstocks
- Design and operability issues in modular scale (<50 MW_e)
- Gasification models
- Component level modifications

Indrawan, N., Kumar, A., Moliere, M., Sallam, K.A. and Huhnke, R.L., 2020. Distributed power generation via gasification of biomass and municipal solid waste: A review. *Journal of the Energy Institute*, *93*(6), pp.2293-2313.

CYCLE COMPARISON

Name of the technology	TNEE 30, 36, 37	FERCO ^{3, 31}	Güssing ^{32, 33}	
Development beginning	In the 1980's	In the 1970's	In the 1990's	
Simplified scheme	Product gas Hot Supprov Biomass Recycled syngss Kar Air	Product gas Flue gas Flue gas Flue gas Flue gas Flue gas Flue gas Flue gas Flue gas	Product gas	
Technology				
definition (see	$Y_1=0.05, Y_2=0,$	$Y_1=0, Y_2=1,$	$Y_1=0.05, Y_2=0,$	
text for the	$Y_3=1, Y_4=1$	$Y_3=0, Y_4=0$	$Y_3=0, Y_4=0$	
Yi)				

RESULTS FROM KINETIC MODEL

EFFECT OF TEMPERATURE ON TAR EVOLUTION AT ER 0.3

SENSITIVITY OF HYDROGEN PRODUCTION

PROJECT INTRODUCTION

HDSTEM Implementation

Humanities Directed STEM Objectives

- Overcome communication barriers among general audiences outside of the field.
- Overcome skepticism due to misinformation.
- Overcome the lack of frameworks to communicate STEM research to distinct audiences.

PROJECT PROGRESS TASK 1.1 SYSTEM ANALYSIS

RESULTS FROM KINETIC MODEL

TASK 1.1 SYSTEM ANALYSIS

• System Output: 50 Mwe

- Gasifier: Fluidized Bed
- Feedstock: Regional Biomass & MSW and Co-Gasify
- Pressure: 0-30 bar
- Auxiliary: ASU, Scrubber, WGS Reactor
- Power Cycle: CPC
- Pre & Post-combustion CCU

Figure: Initial IGCC Configuration with Post CCS