

RESOURCES

Wabash Hydrogen Negative Emissions Technology Demonstration

DE-FE-0031994

2024 FECM Spring R&D Project Review Meeting – April 25, 2024

US Department of Energy, Federal Funding Status

Year	Department	Amount	Status	Links, Notes
2018	DOE, FECM via Illinois Geological Survey	Geological Characterization		

DE-FE0031994 – Project Objectives

Develop and design all aspects of the scope, cost, schedule and investment case for Front End Engineering Design (FEED)

- Complete set of FEED deliverables
- 100% hydrogen capable combustion turbine
- Design for geological sequestration wells and infrastructure (Pipeline)
- High volumetric energy storage via Ammonia (NH₃)
- Fastest to Commercialization
- Enhanced FEED & final vendor selection

Major Technical Achievements

Lowest Levelized Cost of Energy (LCOE) of the 21st Century Power Plant: Zero Carbon and Dispatchable

Revitalize existing infrastructure and design development for accelerated commercial deployment

Near zero emissions with 97%+ total carbon capture vs. 90% goal.

Net negative carbon lifecycle intensity achievable with biomass feedstock utilization

Flexible operations that include dispatchability and turndown, along with hydrogen storage in the form of Ammonia

Major Commercial Achievements

Redevelopment of a coal community

- Creatively utilizes land below the SMCRA remediated coal mines for CCS
- Repurposing the gasification creates long term job security for previous miners and power plant workers

Develop private capital market support for commercial demonstration

• Continuous multi year education to banks and private funds has paved a path for potential private capital involvement alongside federal funds

Comprehensive financial modelling that incorporates environmental attributes

- Incorporate non-traditional elements such as financial responsibility aspects of Class VI
- Risk factors around lifecycle intensity and related revenues
 - Net 0, 45 V vs Q, Regionality, Additionality, Hourly Matching
- Biomass / H2 still a viable pathway
- Embed risk management around claw backs of incentives

DOE PROJECT PARTNERSHIPS

Project Timeline

WVR is the most advanced hydrogen and ammonia project in the country. Strong federal support demonstrated throughout the development phase via high-risk capital investment.

Bioenergy + Solid Waste = Carbon Negative Pathway

Argonne National Lab (ANL) conducted detailed lifecycle carbon analysis. WVR project achieves negative carbon intensity by blending 20% biomass as feedstock.

FEED Scope: Block Flow Diagram

BP1 Accomplishments

Net Zero / Biomass Strategy

• Biomass Testing and Analysis

- Various types of biomasses feedstocks considered include corn stover, corn silage, and forest residue.
- Pre-Treatment options evaluated were steam explosion, torrefaction, and fast pyrolysis.
- Slurryability requirements (% solids).
- Pyrolysis Oil
 - Two different bio-oil ratios based on HHV
 - 12% bio-oil
 - 18% bio-oil
- LCA Requirements
 - 20% by weight of fast pyrolysis bio-oil with sequestration to achieve net zero

	Petcoke	Biomass	Total Solids			
Trial	(wt%)	(wt%)	(wt%)	Biomass	Results	Notes
1	56.0%	5.2%	61.2%	SE		Mixture became hard / un-pumpable mixture after < 10 sec
2	20.0%	1.9%	21.9%	SE		No noticeable issues
3	20.0%	5.6%	25.6%	SE		No noticeable issues
4	29.0%	5.4%	34.4%	SE		No noticeable issues
5	39.0%	5.3%	44.3%	SE		Mixture starting becoming viscous after < 24 hrs
						Mixture became hard / un-pumpable after soon after
6	48.0%	5.1%	53.1%	SE		Completely hard after < 24 hrs
						Mixture became hard / un-pumpable soon after adding the biomass
7	47.0%	7.8%	54.8%	SE		Completely hard after < 24 hrs
8	44.0%	3.0%	47.0%	TORR		Torrified wood, still appeared pumpable after ~24 hrs
9	43.0%	4.8%	47.8%	TORR		Torrified wood, still appeared pumpable after ~24 hrs
10	50.0%	7.5%	57.5%	TORR		Torrified wood, became un-pumpable soon after adding biomass

Carbon Capture Technology Selection

Final Selection: UOP Dehydration, Fractionation, PSA

- Modularized/Smaller Plot
- Lower CAPEX
- Low Steam Consumption
- Meets requirement for dry CO₂ and Hydrogen

Status	

Status	Class VI Permit Requirement								

BP2 Accomplishments

Technical Accomplishments

Completed Tasks 2023

Fast Pyrolysis FEED completed

100% Hydrogen Power Block FEED completed

Water Gas Shift, H_2 purification and CO_2 capture FEED completed

CO₂ pipeline routing and injection well design complete

Gasification inspections complete

Completed Tasks 2024

Gasification BOP integration

Hydrogen Storage (Ammonia) FEED - HAZOP

Final PDRI

Overall FEED integration

Lifecycle Analysis

Final Report 80% Complete

Hydrogen Pant FEED 3D Model

Power Block FEED 3D Model

Ammonia Plant with Product Handling System FEED 3D Model

Project Controls Performance

Risk Management

										i		
	Unmitigated Risk						Mitigated Risk					Total Ranks
	1	2	3	4	5		1	2	3	4	5	
Project Management & Engineering		0	6	5	1		7	3	4	0	0	14
Technology		0	4	2	0		0	5	1	0	0	6
Operations	1	1	1	0	0		3	0	0	0	0	3
Regulatory	0	0	3	2	0		1	2	2	0	0	5
Financing		0	3	2	0		0	0	5	0	0	5
Schedule	0	0	3	1	1		1	0	4	0	0	5
All Risk Categories		1	20	12	2		12	10	16	0	0	38
RPI	91 3.24							2.11				
Total Ranks Schedule, 5 Financing, 5 Financing, 5												
Regulatory, 5 Operations, 3 Technology, 6												

RESOURCES

Total Risks

Risk Rank

Project Statistics

- ~85,000 WVH Hours
- ~215,000 Subrecipient & Vendor Hours
- 6 Full FEED packages
- Project Participants
 - BP1 44 contributors
 - BP2 85 contributors (42 additions)

THANK YOU

