

UNDUNIVERSITY OF NORTH DAKOTA

Modular biomass Gasification for Co-Production of Hydrogen and Power DE-FE0032182

Junior Nasah

U.S. Department of Energy National Energy Technology Laboratory Fossil Energy and Carbon Management April 23-25, 2024

COLLEGE OF ENGINEERING & MINES

Project Overview

Funding

- Federal: \$1,600,000
- North Dakota Industrial Commission \$500,000
- Singularity Energy Technologies: \$20,000

Team Funding

- UND: \$1,470,056
- Envergex LLC: \$579,944
- Singularity Energy Technologies: \$70,000

Objective

Demonstrate the technical and economic feasibility of a novel, process-intensified and modular Combined Hydrogen Heat and Power (CH²P) technology, targeting scales less than 50 MW_e (~60 MTPD hydrogen)

Period of Performance

- Start: 10/01/2022
- Stop: 09/30/2024

Small Scale Biomass to Hydrogen

- Small scale (5 50 MW_e) H₂ production from biomass requires sufficient biomass (~200 – 2,000 mptd)
- Abundant biomass residues available in ND and MN
- Combustion for facility steam/heat/power does not consume all biomass residues produced

Sunflower Processing facilities;

 ADM Northern Sun Division, SunOpta, Smude's Sunflower Oil, CHS Sunflower

Sugar Beet Processing facilities;

 American Crystal Sugar Company, Southern Minnesota Beet Sugar Cooperative, Minn-Dak Farmers Cooperative

RDF/MSW Facilities;

Minnesota Resource Recovery Facility

¹Cao, X., et al. (2013). Journal of agricultural and food chemistry, 61(39), 9401-9411.
²Brachi, P., et al. (2017).. Combustion Institute-Sezione Italiana.
³Turzyński, T., et al. (2021). Materials, 14(10), 2484.
⁴Ganesh, T., Vignesh, P., & Kumar, G. A. (2013). Carbon, 35, 40-0.

Sunflower hulls

Beet pulp Shreds

Refuse derived fuel

Property	Beet pulp ¹	Sunflower hulls ^{2,3}	RDF⁴				
% MC	6.9	9.61 5.5					
% AC	6.2	1.2 16					
% VM	75.4	82.7 57.5					
% FC	18.5	16.1 15					
S	0.2	- 0.35					
С	51.1	46.21	37.5				
Н	6.7	6.06	6.5				
Ν	3.4	0.88	3				
0	38.7	46.58	27.5				
HHV , MJ/Kg	20.29	18.11	-				
LHV, MJ/Kg	18.92	-	_				

Steam-Iron 2.0!

- Steam-Iron Process: Patented by Howard Lane in the early 1900s
- First large-scale production of H₂ from H₂O was by Lane Hydrogen Producer
- · Iron-oxide was the active component used in the process

The steam-iron process was abandoned over time:

- H₂ produced low purity
- Poor stability of oxide material
- H₂ via hydrocarbons cheaper/Better economies of scale
- Thermodynamically limited

 $3\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2 \Delta \text{H}_{800^\circ\text{C}}$ -50.5kJ/mol

 $Fe + H_2O \rightarrow FeO + H_2 \qquad \Delta H_{800^{\circ}C} - 15.0 \text{kJ/mol}$

UNITED STATES PATENT OFFICE.

HOWARD LANE, OF BIRMINGHAM, ENGLAND, ASSIGNOR TO INTERNATIONALE WAS-SERSTOFF AKTIENGESELLSCHAFT, OF FRANKFORT-ON-THE-MAIN, GERMANY, A CORPORATION OF GERMANY.

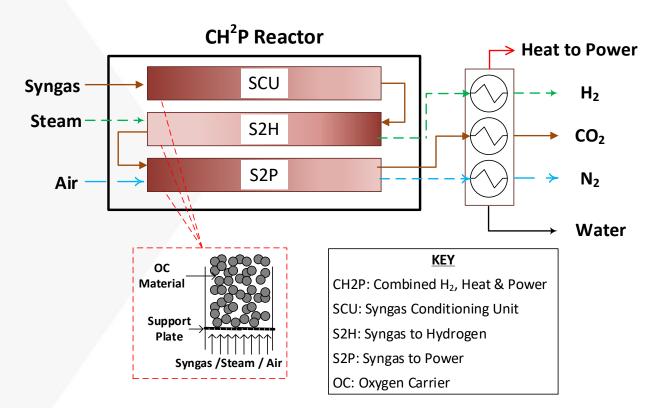
PROCESS FOR THE PRODUCTION OF HYDROGEN.

 1,078,686.
 Specification of Letters Patent.
 Patented Nov. 18, 1913.

 No Drawing.
 Original application filed June 16, 1910, Serial No. 572,411.
 Divided and this application filed December 9, 1911.

To all whom it may concern: Be it known that I, HowARD LANE, a subject of the King of Great Britain, and resident of 125 Edmund street, Birmingham, in the county of Warwick, England, have invented certain new and useful Improvements in a Process for the Production of Hydrogen, of which the following is a specification. This application is a division of my apfiled the 16th June 1910 Serial No. 572,411. This invention relates to the well-known method of producing bydrogon in which a

Lane, H. (1913). U.S. Patent No. 1,078,686. Washington, DC: U.S. Patent and Trademark Office.


Voitic, G., et al. (2016). High purity pressurised hydrogen production from syngas by the steam-iron process. *RSC advances*, 6(58), 53533-53541.

Thursfield, A., & Metcalfe, I. S. (2013). High temperature gas separation through dual ion-conducting membranes. Current Opinion in Chemical Engineering, 2(2), 217-222.

Combined Hydrogen, Heat & Power

CH²P (Combined Hydrogen, Heat and Power)

- Three step process: 1) Oxy-gasification of low carbon fuel, 2) Syngas oxidation with oxygen carrier, and 3)
 Oxidation of oxygen carrier with steam/air
- Leverages advances in chemical looping combustion and high temperature systems to improve stability and purity
- Interest in distributed, small-scale H₂ production
- Intensification for co-production of heat and power

Project team

- UND's College of Engineering and Mines Research Institute (CEMRI)
 - Mr. Junior Nasah (PI), Dr. Johannes (Hannes) Van der Watt
 - Two research engineers and three graduate students
- Envergex LLC (small business partner)
 - Dr. Srivats Srinivasachar

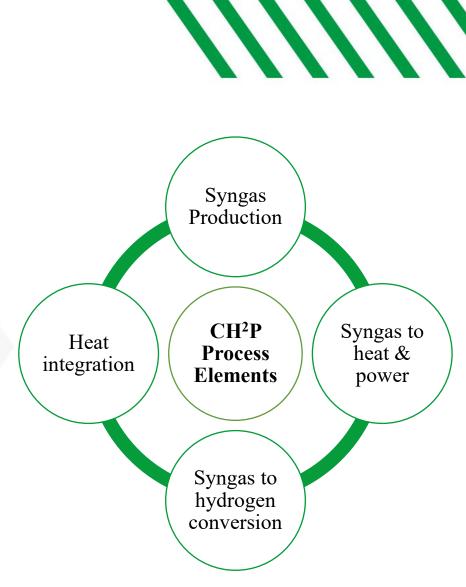
- Singularity Energy Technologies (Small business, Sandwich[™] Gasifier consultant)
 - Dr. Nikhil Patel

Team Organization

Graduate Students

Dr. Daniel Laudal – Director Mr. Junior Nasah (PI) – Assoc. Director College of Engineering & Mines Research Institute

US Dept. of Energy National Energy Technology Laboratory


Sub-contractor Dr. Srivats Srinivasachar, Envergex

Task 1 – Project Management and Planning	Task 2 – Development and Evaluation of Novel OCM	Task 3 – Laboratory Scale Evaluation of Oxygen- Blown Gasifier	Task 4 – Integrated Hydrogen Production	Task 5 – Preliminary TEA	
Nasah (Lead)	Srinivasachar (Lead)	Van der Watt (Lead)	Van der Watt (Lead)	ntt (Lead) Nasah (Lead)	
Laudal	Nasah	Nasah	Nasah	Laudal	
Srinivasachar	Van der Watt	Patel (SET)	Srinivasachar	Srinivasachar	
	Graduate Student	Engineer / Scientist	Engineer / Scientist	Patel (SET Consultant)	
		Graduate Student	Graduate Student	Van der Watt	

Technical Approach

Five Key Focus Areas

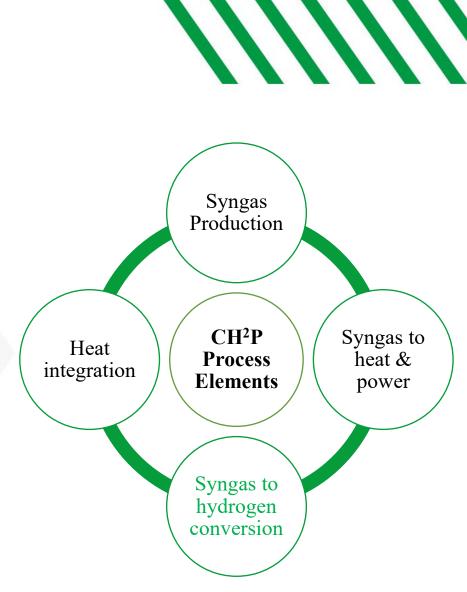
- 1. Develop oxygen carrier materials (OCM) and evaluate cyclic performance with syngas and steam (Task 2)
- Characterize syngas quality from oxy-blown Sandwich[™] gasification (Task 3)
- 3. Produce high purity H_2 and compression-ready CO_2 (Task 2, 4)
- Test integrated laboratory unit of Sandwich[™] gasifier and CH2P reactor (Task 4)
- 5. Perform TEA of process including pathway to \$1/kg of H_2 (Task 5)

Project Status

- Activities ongoing in all focus areas
- Oxygen Carrier Material (OCM) development
- Gasification testing
- OCM testing in a tube reactor
- Construction of bench CH²P
- Techno-economic analysis

Milestone Title and Description	Due Date
Project Management Plan	10/30/2022
Technology Maturation Plan	12/28/2022
Synthesis Gas Characterization	4/30/24
Down-selection of OCMs	3/28/24
Extended cycling of OCM completed	7/1/24
Gasifier Heat Mass Balance Completed	6/30/24
Integrated Testing Completed	9/1/24
Integrated Heat Mass Balance Completed	9/16/24
Final TMP	9/30/24
OCM Development Report	4/25/24
Techno-Economic Analysis	9/30/2024

Project Schedule


		Start Date	End Date	10/	22 - :	12/22	1/2	3 - 3/23	4/2	3 - 6/23	7/	23 - 9/2	3 1)/23 -	12/23	1/24 -	3/24	4/24	- 6/24	7/24	4 - 9/24	1
Task 1	Project Management and Planning																					
1.1	Project Management Plan	10/1/22	9/30/24																		_	-
1.2	Technology Maturation Plan	11/2/22	8/1/24																			
	Mileston 1 - Kickoff	11/	2/22		\star																	
	Milestone 2 - PMP Updated	10/2	28/22		\star																	
	Milestone 3 - Preliminary TMP	12/2	29/22			1	r															
	Milestone 10 - Final TMP	9/3	0/24																			\star
	Quarterly and Final Reports						*	·	7			*		\star		*		*	,	*		*
Task 2	Development & Evaluation of Novel Oxygen Carrier Materials																					
2.1	Laboratory Scale OCM Manufacturing	11/2/22	3/28/24																			
2.2	Characterization and Performance Testing	1/9/22	3/29/24																			
2.3	OCM Lifetime Evaluation	12/1/23	6/31/24																			
	Milestone 5 - Downselection of OCM	3/2	8/24														7					
	Deliverable A - OCM Development Report	4/2	5/24															*				
	Milestone 6 - 1000 hr cycle completed on downselect	7/:	1/24																	★		
Fask 3	Lab Scale Evaluation of Oxy-Blown Gasifier																					
3.1	Feedstock Procurement & Characterization	11/2/22	1/31/23																			
3.2	Heat Distribution Modelling and Equipment Upgrade	1/3/23	1/15/24																			
3.3	Synthesis Gas Production	5/15/23	4/30/24																			
	Milestone 4 - Synthesis Gas Characterization	4/3	0/24															*				
Task 4	Integrated Hydrogen Production																					
4.1	Catalyst Manufacturing	9/1/23	2/15/24																			
4.2	Hydrogen Reactor Fabrication	9/1/23	4/30/24									-										
4.3	Integrated Testing	1/2/24	9/1/24																			
	Milestone 8 - Integrated Testing Completed	9/:	1/24																		\star	
Task 5	Preliminary Techno-Economic Analysis	10/15/23	9/30/24																			
	Milestone 7 - Gasifier Heat Mass Balance	6/3	0/24																7			
	Milestone 9 - Integrated Heat Mass Balance	9/1	6/24																		1	k 👘
	Deliverable B - Techno-Economic Analysis	9/3	0/24																			*

Green is completed Red is changes Black is original

Technical Approach

Focus Area 1

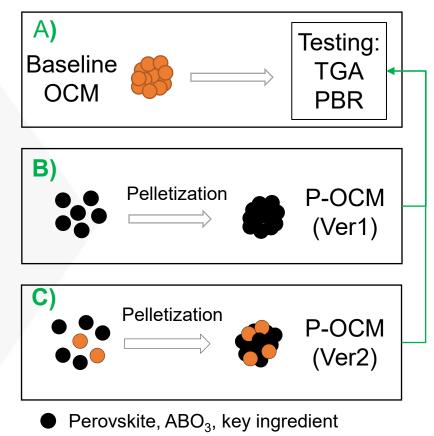
- 1. Develop oxygen carrier materials (OCM) and evaluate cyclic performance with syngas and steam (Task 2)
- Characterize syngas quality from oxy-blown Sandwich[™] gasification (Task 3)
- 3. Produce high purity H_2 and compression-ready CO_2 (Task 2, 4)
- Test integrated laboratory unit of Sandwich[™] gasifier and CH2P reactor (Task 4)
- 5. Perform TEA of process including pathway to \$1/kg of H_2 (Task 5)

Focus Area 1

Evaluate OCM Performance

A. Baseline OCM – H_2 Production

Determine cyclic syngas conversion performance
 Evaluate reaction rates in packed bed
 Determine effect of impurities

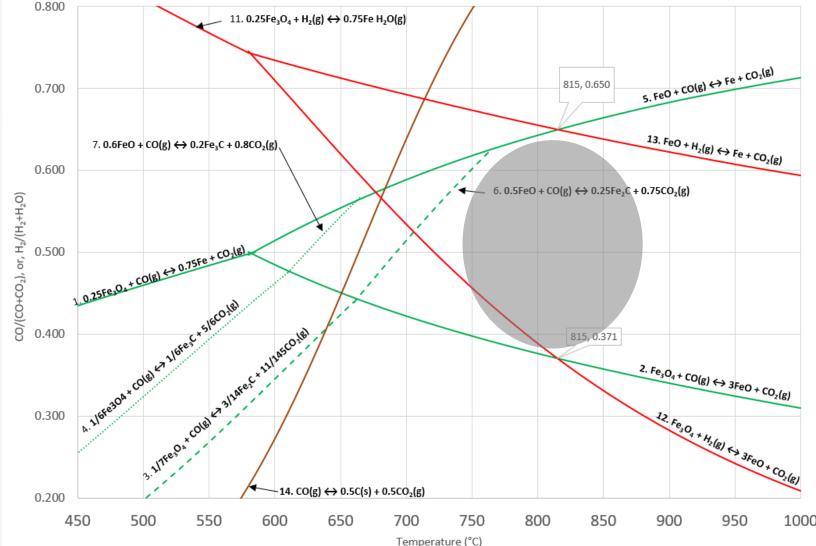

B. Perovskite – Syngas Conversion

- ✓ Prepare perovskites by
 - ✓ Pechini method
 - ✓ Mechanical mixing

Evaluate syngas conversion in packed bed

C. P-OCM – H₂ & Syngas

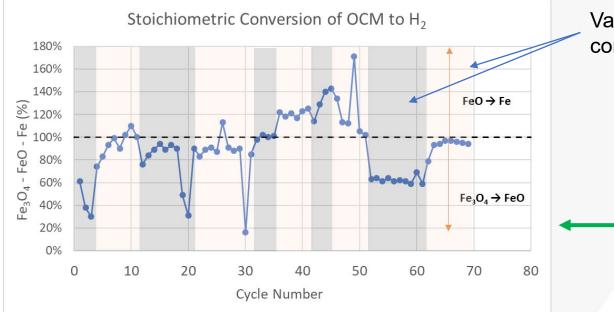
□ Prepare perovskite-baseline blend and evaluate

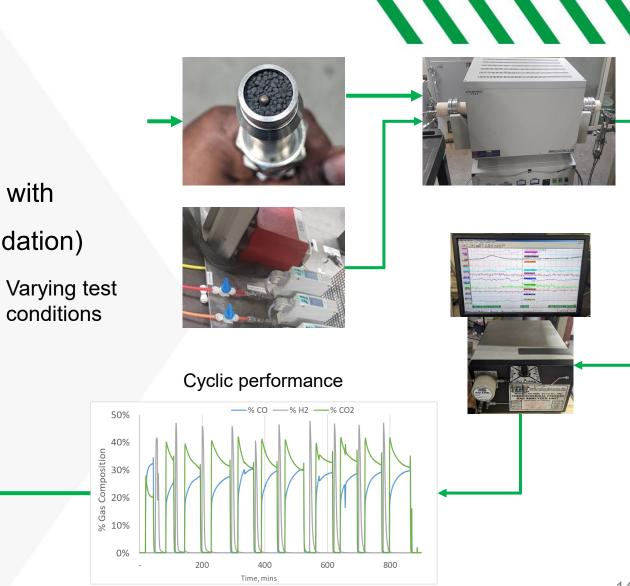


FEH31, Baseline material

Thermodynamics

- Thermodynamics determined by Baur-Glaessner diagram
- Diagram identifies equilibrium CO and H₂ conversion as function of temperature
- Also identifies conditions for carbide formation



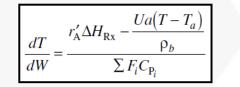

Focus Area 1A

Baseline OCM (FEH31, developed in FE0031534)

Developed in previous project (FE00031534)

 Multi-cycling tests ongoing (~70 cycles of 1000) with 100% CO/CO2 (reduction) and 100% steam (oxidation)

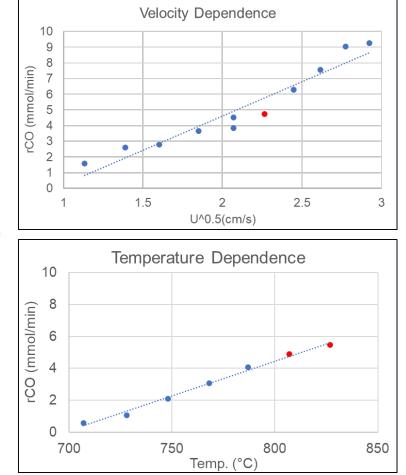
Focus Area 1A


Baseline OCM (FEH31)

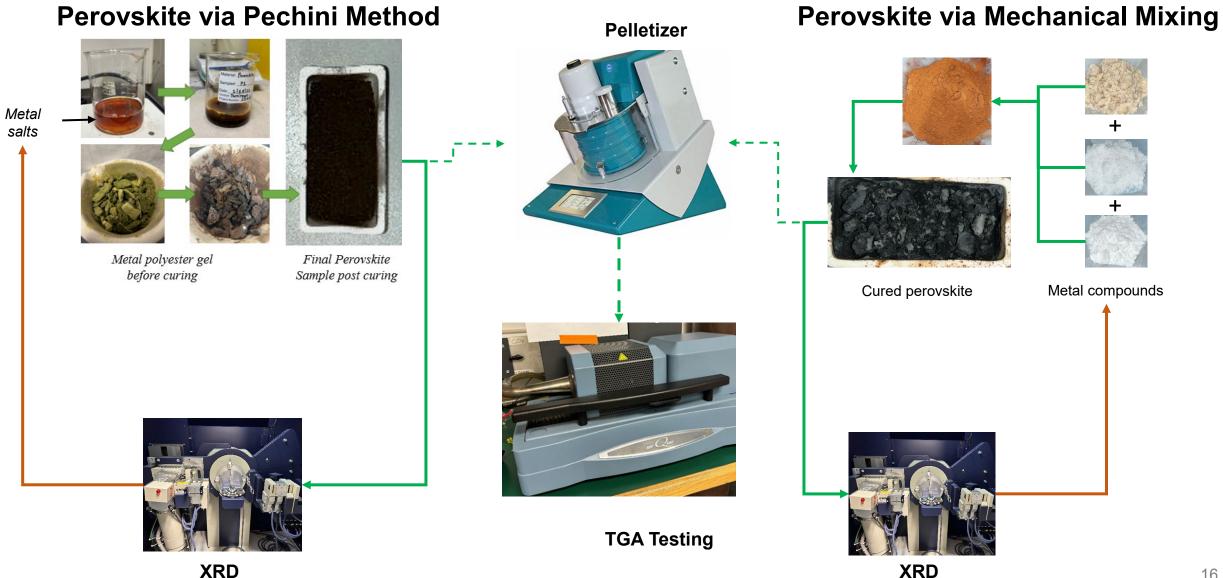
Developing model for reactor performance

□ Temperature dependence

□ Pressure dependence


Determine effect of impurities

Turner	Variation	on of Reaction Rate with:				
Type of Limitation	Velocity	Particle Size	Temperature			
External diffusion	U ^{1/2}	$(d_{\rm p})^{-3/2}$	≈Linear			
Internal diffusion	Independent	$(d_{\rm p})^{-1}$	Exponential			
Surface reaction	Independent	Independent	Exponential			

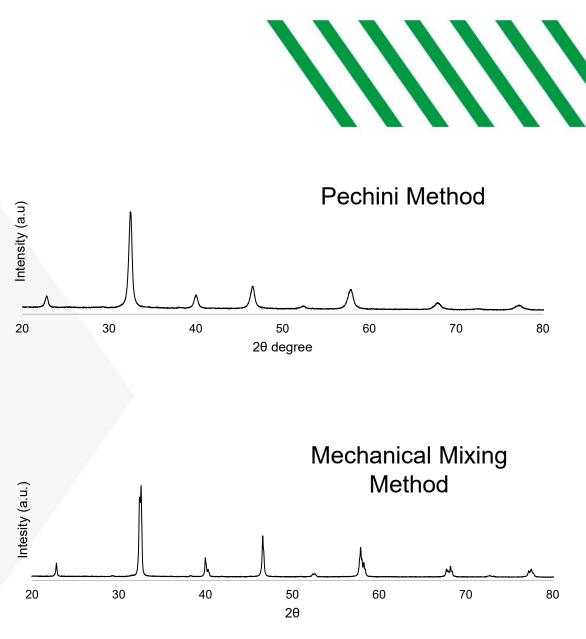

$\frac{dP}{dz} = -\frac{G}{\rho g_{\rm c} D_{\rm P}} \left(\frac{1-\phi}{\phi^3}\right) \left[\underbrace{\frac{\text{Term 1}}{150(1-\phi)\mu}}_{D_{\rm P}} + \underbrace{\frac{\text{Term 2}}{1.75G}}_{D_{\rm P}} \right]$
--

Fogler, H. S. (2010). Essentials of chemical reaction engineering: essenti chemica reactio engi. Pearson Education.

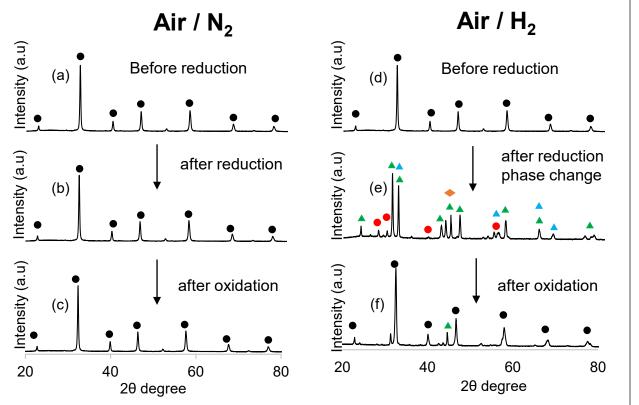
Focus Area 1B

Focus Area 1B

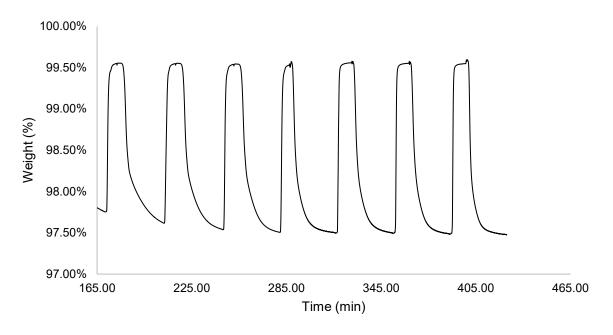
- Preparation methods for perovskite completed
- Both production pathways showed similar purity
- Testing of perovskite for syngas conversion ongoing


Pelletized Perovskite Material

Before curing


After curing

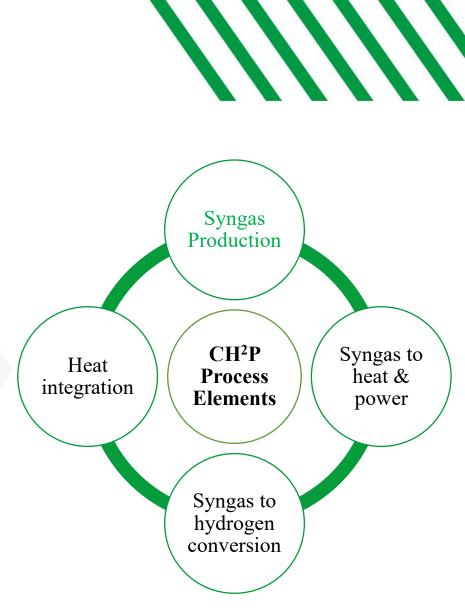
Focus Area 1B


Reversibility Tests

Evaluated phase changes due to redox reactions on perovskite powders
 Objectives:
 Evaluated

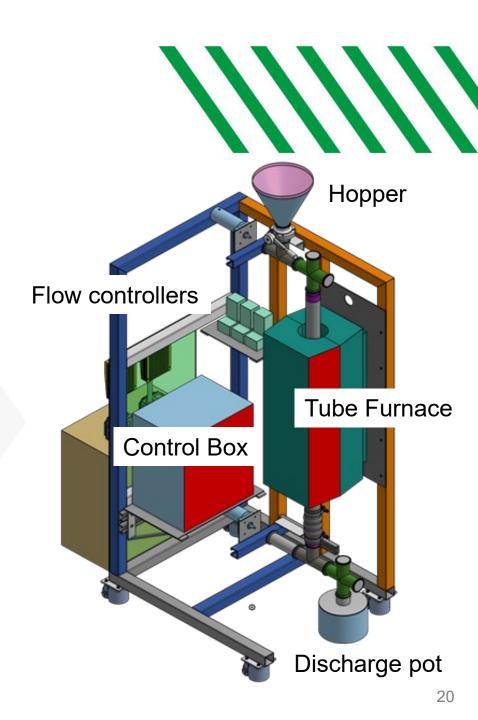
 N_2 reduction and air oxidation runs: diffractogram of sample (a) before reduction; (b) after reduction; (c) after oxidation. H_2 reduction and air oxidation runs: (d) before reduction; (e) after reduction; (f) after oxidation

- Evaluated cyclical stability of perovskite in
 - Reducing atmosphere: CO/CO₂ (N₂ background)
 - Oxidizing atmosphere: Air



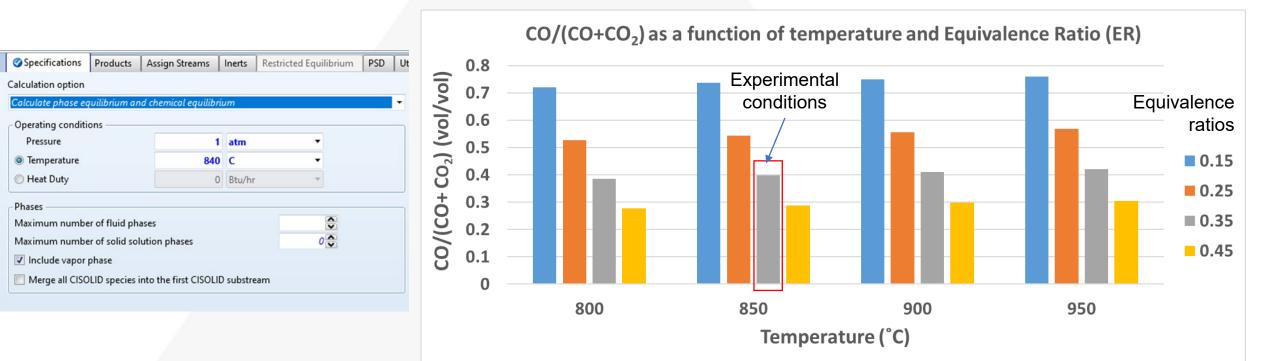
Technical Approach

Focus Area 2

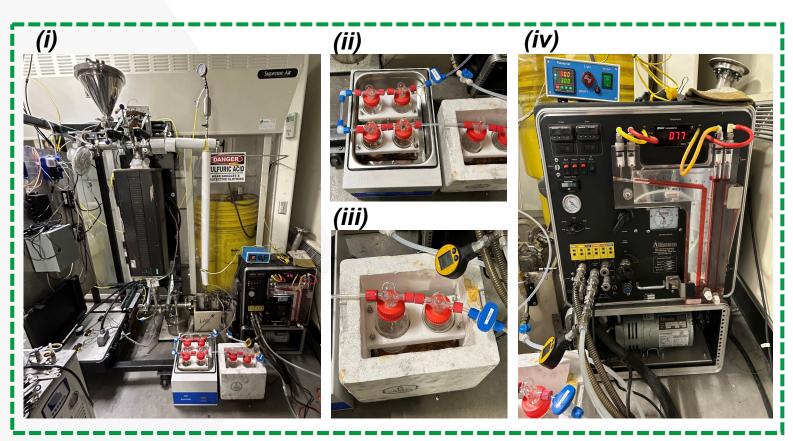

- 1. Develop oxygen carrier materials (OCM) and evaluate cyclic performance with syngas and steam (Task 2)
- 2. Characterize syngas quality from oxy-blown Sandwich[™] gasification (Task 3)
- 3. Produce high purity H_2 and compression-ready CO_2 (Task 2, 4)
- Test integrated laboratory unit of Sandwich[™] gasifier and CH2P reactor (Task 4)
- 5. Perform TEA of process including pathway to \$1/kg of H_2 (Task 5)

Focus Area 2

Objective: Characterize syngas quality

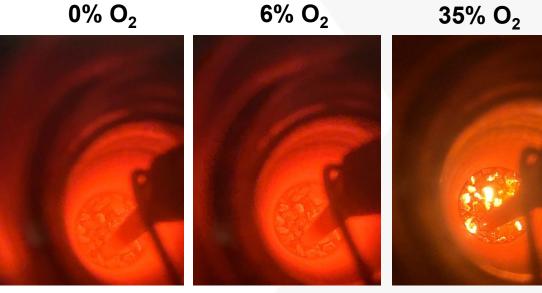

- A. Process simulation of Sandwich[™] gasification
 (ASPEN Plus)
 - Evaluate multiple equivalence ratios
 - ✓ Validate with experimental data
- B. Produce Syngas Using Sandwich[™] Gasification
 technology
 - Oxy-gasification with CO₂ & H₂O
 - Evaluate two biomasses (wood pellets & ag-waste)
 - □ Tar sampling and analysis

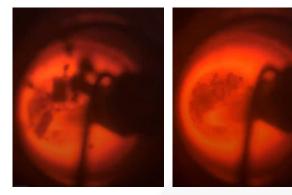
Focus Area 2A – Process Model


- Evaluated multiple equivalence ratios (ER)
- ER of 0.35 selected
- Oxidant ratios: O_2 / CO_2 of 0.35 / 0.65

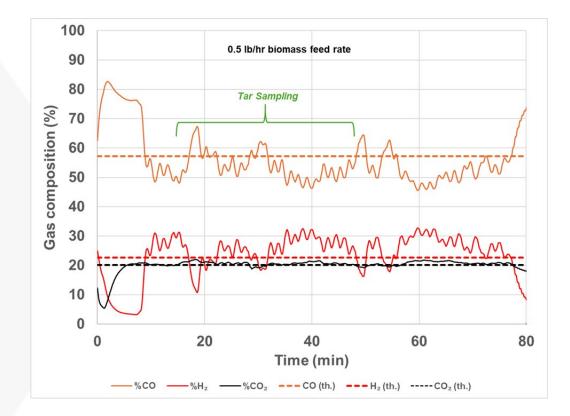
 $\frac{CO}{CO + CO_2} = \begin{array}{c} \text{Extent of Fe} \\ \text{conversion} \end{array}$

Focus Area 2B – Gasification


- Biomass gasification
 - Woodchips at 850 °C
 - ~0.5 lb./hr feed rate
- Sandwich[™] Gasifier Design
 - Multi-zone gasification
 - CO₂ + O₂; H₂O + O₂
- Tar sampling
 - Tar Protocol (CEN/TS 15439:2006)¹
 - DCM under consideration


(i) Gasification unit; Tar sampling equipment – (ii) hot bath,
 (iii) cold bath, (iv) pump and gas metering console

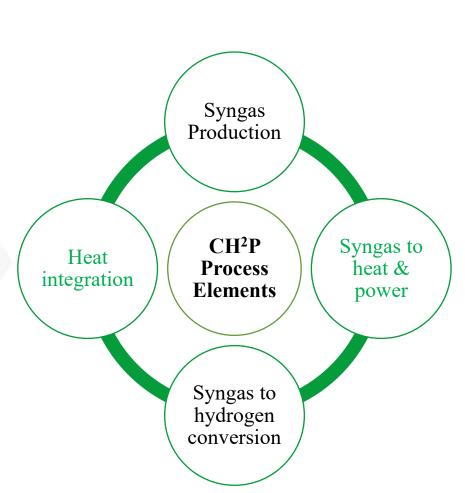
Focus Area 2B - Gasification



Addition of O_2

Addition of wood pellets

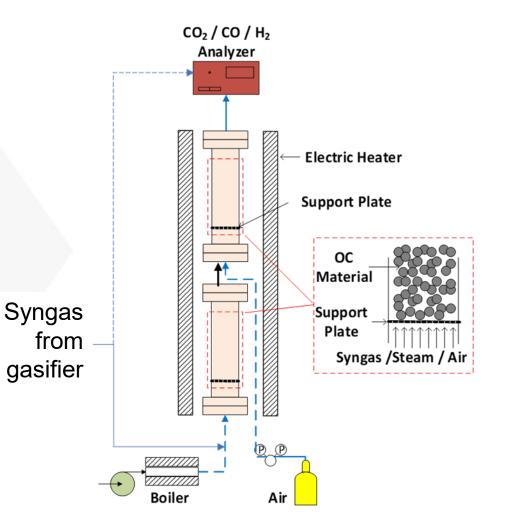
Sampling train (no filter)



Saw good agreement between experimental and ASPEN simulation

Technical Approach

Focus Area 3 – 5 (future activities)


- 1. Develop oxygen carrier materials (OCM) and evaluate cyclic performance with syngas and steam (Task 2)
- Characterize syngas quality from oxy-blown Sandwich[™] gasification (Task 3)
- 3. Produce high purity H_2 and compression-ready CO_2 (Task 2, 4)
- 4. Test integrated laboratory unit of Sandwich[™] gasifier and CH2P reactor (Task 4)
- 5. Perform TEA of process including pathway to \$1/kg of H_2 (Task 5)

Future Activities

- Focus Area 3 & 4
 - Construct a CH²P bench unit and integrate with lab gasifier unit
 - Evaluate H₂ and CO₂ purity
- Focus Area 5
 - Preliminary design of commercial reactor
 - Techno-economic analysis

Questions?

Junior Nasah CEM Research Institute University of North Dakota <u>nasah.domkam@und.edu</u> 701-777-4307