Catalytic Membrane Reactors Based on Carbon Molecular Sieve Hollow Fiber Membranes for Sustainable and Modular H₂ Production (DE-FE0032209)

> Haiqing Lin¹, Mark Swihart¹, Carl Lund¹, and Rajinder Singh²

¹University at Buffalo, State University of New York; ²Los Alamos National Laboratory;

> DOE Project Review Meeting Pittsburgh, PA

> > 4/23/2024

Outline

- Project overview
- Our approach: catalytic membrane reactors (CMRs)
 - Simulation and optimization
 - Nano-catalyst development
 - Carbon molecular sieve (CMS) membranes
 - Preliminary data on CMRs vs packed-bed reactors (PBRs)
- Summary

Project Information

- Award number: DE-FE0032209
- **Project period:** 10/1/22 to 9/30/24
- Program manager: John P. Homer

Project Objective: Demonstrate a process-intensified process for economically viable, modular H_2 production from waste biomass using catalytic membrane reactors (CMR) based on carbon molecular sieve (CMS) hollow fiber membranes.

Specific Objectives

- Design *membrane reactors* for high-temperature WGS reaction by integrating H₂-selective membranes, catalysts, and optimized process designs;
- Prepare and optimize CMS hollow fiber membrane modules to achieve H₂ permeance of 1,000 GPU and H₂/CO₂ selectivity of 100 at pressures up to 20 bar and temperatures up to 400 °C;
- Design and prepare *nano-catalysts* with high WGS activity and stability under CMR conditions;
- Prepare and characterize the CMRs for high-temperature WGS reactions using simulated and real syngas containing H₂S, CO, and water vapor; and
- Conduct the *process design* and analysis based on the newly developed membranes for H_2/CO_2 separations.

Organization Chart and Roles

Simulation on Water-gas Shift Reaction

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$

Feed —	Dry gas composition (mol%)				
	H ₂	СО	CO ₂	CH ₄	
Natural Gas	74	17	6	3	
Biomass 1	50	25	20	5	
Biomass 2	35	40	10	15	

Dry gas hourly space velocity (DGHSV)

$$DGHSV = \frac{\dot{V}_{CO,in} + \dot{V}_{H_2,in} + \dot{V}_{CO_2,in} + \dot{V}_{CH_4,in}}{V}$$

Reactor Configurations

Traditional packed bed reactor (PBR): high-temperature followed by low-temperature

Catalysis membrane reactor (CMR)

7

Optimize Temperature and Membranes

Co-current membrane reactor temperature profiles during processing of the Biomass 1.

Optimum DGHSV for an impermeable thermal membrane reactor processing the Biomass 1 feed at 97% H_2 yield.

A greater DGHSV indicates a smaller volume

CMR vs PBRs by DGHSV

Feed	H_2 yield	DGHSV (mL/(g h))		
reea	(%)	PBRs	CMRs	
Natural Gas	95	7,640	32,200	
Natural Gas	97	5,310 21,300		
Natural Gas	99	3,120	9,660	
Biomass 1	95	4,680	11,200	
Biomass 1	97	3,580	7,950	
Biomass 1	99	2,300	2,560	
Biomass 2	95	3,260	6,520	
Biomass 2	97	2,620	4,850	
Biomass 2	99	1,800	600	

A greater DGHSV indicates a smaller volume

Nano-catalysts for WGS Reaction

Solid solution catalysts design route in the flame aerosol process

$(CrFe)O_x$ solid solution catalyst

Fe₂O₃-based Catalyst for WGS Reaction

I. Carbon promoted Fe_2O_3 catalyst: prepared in the liquid phase by a sacrificial template method

II. Silica-supported Fe_2O_3 catalyst: prepared in a flame aerosol reaction in vapor phase

11

Performance of Two Catalysts

 $CO + H_2O \rightleftharpoons CO_2 + H_2$

GHSV = 42,000 mL/(g h)

Ni-promoted MOF-derived Fe₂O₃ Catalyst

Small particle size and high porosity Lead to better performance

Layer Double Hydroxide-Derived Fe₂O₃

Cu Promoted Fe/SiO₂ Catalyst

Permeability/Selectivity Tradeoff

	Critical	Kinetic
	temperature	diameter
	(K)	(Å)
H ₂	33	2.89
CO ₂	304	3.3

$$egin{array}{c} \displaystyle \frac{S_{_{H_2}}}{S_{_{CO_2}}} << 1 \ \ {
m and} \ \ \frac{D_{_{H_2}}}{D_{_{CO_2}}} >> 1 \end{array}$$

Our Approach: Carbonization of Pyrophosphoric Acid (PAA)-Doped PBI

Carbonized PBI Hollow Fiber Membrane (HFM)

Robust Selective Layer after Carbonization

DBX crosslinked PBI HFM carbonized at 675 $^{\circ}\mathrm{C}$

H₂/CO₂ Separation Properties

Carbonized Cross-linked PBI HFM

Dibromo-xylene (DBX) crosslinked PBI HFM

Long-Term Separation Properties

50 psia and $175^{\circ}C$, $H_2/CO_2/H_2O$ (35/35/30 vol.%) for 700 hours

Tubular PBI CMS Membranes

Morphology of Tubular CMS Membrane

Good H₂/CO₂ Separation Performance

Base Case of Membrane Reactors

Advantage of CMRs

- **Catalyst:** Cu/Zn/Al from Riogen Inc.
- (25 wt% diluted by SiC)
- Feed CO: $50/50 \text{ CO/N}_2$
- Temperature: 220 °C
- Pressure: 30 psig
- $H_2 : CO : H_2O = 1 : 1 : 1.5$

Status of Project Milestones

ID	Task	Description	Planned Completion Date	Actual Completion Date
M1	1.1	Project Management Plan (PMP)	10/31/22	10/11/2022
M2	1.0	Project Kick-off Meeting	12/30/2022	10/11/2022
M3	1.2	Technology Maturation Plan (TMP)	12/30/2022	10/11/2022
M4	1.4	Environmental Justice Questionnaire	12/29/2024	
M5	2.0	Model for CMRs	09/30/2023	03/31/2024
M6	4.0	High-performance WGS catalysts with CO_2 reaction order less than -0.2	09/30/2023	03/31/2024
M7	5.0	Membranes with superior H_2 permeance of 1,000 GPU and H_2/CO_2 selectivity of 100	09/30/2023	03/31/2024
M8	6.1	CMRs for the high-temperature WGS reaction with $(CO + CO_2)/H_2 < 0.02$ on the permeate side and $(CO + H_2)/CO_2 < 0.05$ on the retentate side	06/30/2024	
M9	6.2	200-h continuous operation of the CMRs for WGS reaction	07/31/2024	
M10	7.0	Final Techno-Economic Analysis (TEA)	09/30/2024	

Summary

- Our simulation shows that the primary advantage of CMR is to increase DGHSV compared to PBRs
- Various Fe₂O₃-based nano-catalysts exhibit high CO conversion (~78%)
- CMS HFMs shows excellent H_2/CO_2 separation performance meeting the target
- Base case CMRs using tubular membranes demonstrate higher CO conversion than PBRs
- We will focus on the CMR demonstration and TEA study.

Acknowledgement

> DOE NETL

- Program managers
 - John Homer (current)
 - Evelyn Lopez (former)
- Cost share from NYSTAR

