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Outline
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 Project overview

 Our approach: catalytic membrane reactors (CMRs)

• Simulation and optimization

• Nano-catalyst development

• Carbon molecular sieve (CMS) membranes 

• Preliminary data on CMRs vs packed-bed reactors 
(PBRs)

 Summary



Project Information
Award number:   DE-FE0032209 

Project period:    10/1/22 to 9/30/24 

Program manager: John P. Homer 

Project Objective:   Demonstrate a process-intensified process for 
economically viable, modular H2 production from waste biomass using 
catalytic membrane reactors (CMR) based on carbon molecular sieve 
(CMS) hollow fiber membranes.
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Specific Objectives

 Design membrane reactors for high-temperature WGS 
reaction by integrating H2-selective membranes, catalysts, 
and optimized process designs;

 Prepare and optimize CMS hollow fiber membrane 
modules to achieve H2 permeance of 1,000 GPU and 
H2/CO2 selectivity of 100 at pressures up to 20 bar and 
temperatures up to 400 °C;

 Design and prepare nano-catalysts with high WGS activity 
and stability under CMR conditions;

 Prepare and characterize the CMRs for high-temperature 
WGS reactions using simulated and real syngas containing 
H2S, CO, and water vapor; and

 Conduct the process design and analysis based on the 
newly developed membranes for H2/CO2 separations. 
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Organization Chart and Roles
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Prof. Haiqing Lin (UB)
Responsibilities: 

Project Management (Task 1)
Membrane and CMR development 

(Tasks 3, 5, 6)

Prof. Carl Lund (UB)
Responsibilities: 

Simulation and CMR design 
(Task 2)

Dr. Raj Singh (LANL)
Responsibility: 

CMS hollow fiber membrane 
development (Tasks 3, 5, 6)

Ms. Katherine Dombrowski 
(Trimeric)
Responsibily: 

Techno-economic analysis (Task 7)

Prof. Mark Swihart (UB)
Responsibility: 

Nano-catalyst development 
(Task 4)



Simulation on Water-gas Shift Reaction
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𝐶𝐶𝐶𝐶 + 𝐻𝐻2𝐶𝐶 ⇄ 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2

Feed
Dry gas composition (mol%)

H2 CO CO2 CH4

Natural Gas 74 17 6 3

Biomass 1 50 25 20 5

Biomass 2 35 40 10 15

𝐷𝐷𝐷𝐷𝐻𝐻𝐷𝐷𝐷𝐷 =
�̇�𝐷𝐶𝐶𝐶𝐶,𝑖𝑖𝑖𝑖 + �̇�𝐷𝐻𝐻2,𝑖𝑖𝑖𝑖 + �̇�𝐷𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖 + �̇�𝐷𝐶𝐶𝐻𝐻4,𝑖𝑖𝑖𝑖

𝐷𝐷

Dry gas hourly space velocity (DGHSV)



Reactor Configurations

Traditional packed bed reactor (PBR): 
high-temperature followed by low-temperature

Catalysis membrane reactor (CMR)
7



Optimize Temperature and Membranes
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Co-current membrane reactor temperature 
profiles during processing of the Biomass 1.

Optimum DGHSV for an impermeable 
thermal membrane reactor processing the

Biomass 1 feed at 97% H2 yield.

A greater DGHSV indicates a smaller volume



CMR vs PBRs by DGHSV
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Feed H2 yield
(%)

DGHSV (mL/(g h))
PBRs CMRs

Natural Gas 95 7,640 32,200

Natural Gas 97 5,310 21,300

Natural Gas 99 3,120 9,660

Biomass 1 95 4,680 11,200

Biomass 1 97 3,580 7,950

Biomass 1 99 2,300 2,560

Biomass 2 95 3,260 6,520

Biomass 2 97 2,620 4,850

Biomass 2 99 1,800 600

A greater DGHSV indicates a smaller volume



Nano-catalysts for WGS Reaction
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Solid solution catalysts design route 
in the flame aerosol process

(CrFe)Ox solid solution catalyst



Fe2O3-based Catalyst for WGS Reaction
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I. Carbon promoted Fe2O3 catalyst: prepared in the liquid phase by 
a sacrificial template method

II. Silica-supported Fe2O3 catalyst: prepared in a flame aerosol reaction in 
vapor phase



Performance of Two Catalysts
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GHSV = 
42,000 mL/(g h)

𝐶𝐶𝐶𝐶 + 𝐻𝐻2𝐶𝐶 ⇌ 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2



Ni-promoted MOF-derived Fe2O3 Catalyst
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Small particle size and high porosity Lead to better performance 



Layer Double Hydroxide-Derived Fe2O3
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Cu Promoted Fe/SiO2 Catalyst
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Permeability/Selectivity Tradeoff

Critical 
temperature 

(K)

Kinetic 
diameter 

(Å)
H2 33 2.89

CO2 304 3.3
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Our Approach: Carbonization of 
Pyrophosphoric Acid (PAA)-Doped PBI
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Carbonized PBI Hollow Fiber Membrane (HFM)
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330 nm



Robust Selective Layer after 
Carbonization
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DBX crosslinked PBI HFM carbonized at 675 ℃

200 nm



H2/CO2 Separation Properties
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Carbonized Cross-linked PBI HFM
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Dibromo-xylene (DBX) crosslinked PBI HFM 

102x156-2

Testing
 at
180 °C

178

37

108 GPU 



Long-Term Separation Properties
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50 psia and 175°C, H2/CO2/H2O (35/35/30 vol.%) for 700 hours



Tubular PBI CMS Membranes
Ceramic tubing 

(5.7 mm by 45 cm)

PBI - PPA

Ceramic-supported PBI CMS membrane

Dip coating

① 2.0 wt% PBI 

② 0.5 wt% PBI

Carbonization
20°

58min  
600°

600°
120min  

600°
600° → 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇

PBI

Acid doping
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Morphology of Tubular CMS Membrane
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Good H2/CO2 Separation Performance
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Base Case of Membrane Reactors

Sweep gas inlet

Sweep gas outlet

Feed gas 
inlet

Feed gas 
outlet

N2 as sweep gas
(30 sccm) N2/H2/CO2/CO

Valve
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Advantage of CMRs

Catalyst: Cu/Zn/Al from Riogen Inc. 
(25 wt% diluted by SiC) 

Feed CO: 50/50 CO/N2

Temperature: 220 oC

Pressure: 30 psig

H2 : CO : H2O = 1 : 1 : 1.5
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Status of Project Milestones
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ID Task Description
Planned

Completion
Date

Actual 
Completion 

Date

M1 1.1 Project Management Plan (PMP) 10/31/22 10/11/2022
M2 1.0 Project Kick-off Meeting 12/30/2022 10/11/2022
M3 1.2 Technology Maturation Plan (TMP) 12/30/2022 10/11/2022
M4 1.4 Environmental Justice Questionnaire 12/29/2024

M5 2.0 Model for CMRs 09/30/2023 03/31/2024

M6 4.0 High-performance WGS catalysts with CO2 
reaction order less than -0.2 09/30/2023 03/31/2024

M7 5.0 Membranes with superior H2 permeance of 
1,000 GPU and H2/CO2 selectivity of 100 09/30/2023 03/31/2024

M8 6.1

CMRs for the high-temperature WGS 
reaction with (CO + CO2)/H2 < 0.02 on the 
permeate side and (CO + H2)/CO2 < 0.05 on 
the retentate side

06/30/2024

M9 6.2 200-h continuous operation of the CMRs for 
WGS reaction 07/31/2024

M10 7.0 Final Techno-Economic Analysis (TEA) 09/30/2024



Summary
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• Our simulation shows that the primary advantage of 
CMR is to increase DGHSV compared to PBRs

• Various Fe2O3-based nano-catalysts exhibit high CO 
conversion (~78%)

• CMS HFMs shows excellent H2/CO2 separation 
performance meeting the target

• Base case CMRs using tubular membranes 
demonstrate higher CO conversion than PBRs

• We will focus on the CMR demonstration and TEA 
study.
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