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Motivation
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• Clean Hydrogen Energy Earthshot
– Cost of $1/kg or less (80% reduction)
– Carbon intensity of 2 kg CO2e / kg H2

– Achieved in 10 years

• Low-carbon, biomass-derived feedstocks are favorable for meeting the 
clean standard
– Fossil sources would require CO2 capture and utilization/sequestration
– Biomass + CCUS gives potential for carbon negative process

• Geographic distribution of biomass-derived feedstocks suggests ideal 
scale for gasification plants (5-50 MW)
– Cost and efficiency must be improved through process intensification and 

implementation of modular components
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Hydrogen Compression

 Hydrogen has the highest gravimetric energy 
density

 Hydrogen must be compressed at very high 
pressure, between 200-950 bar, to be used in 
technologies such as fuel cell vehicle
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Electrochemical Hydrogen Compression

 Anode: Hydrogen oxidation and produces 

protons (HOR)

 Protons migrate through proton exchange 

membrane (PEM)

 Cathode: Proton converts to hydrogen (HER)

Overall: H2 (Pa) → H2 (Pc); Pa <<Pc

ENernst =E0 - 𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛

 𝑙𝑙𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃

Hydrogen oxidation reaction Hydrogen evolution reaction 
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Simultaneous Purification and Compression

EHP
 Simultaneous purification + 

compression: Single unit

 No moving parts

Modular design

 Low energy consumption

 No vibrations

Conventional Process

Multi step purification + compression

Pressure swing 
adsorption 

Piston 
compressor



Comparison with Mechanical Compression
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Opportunities and Challenges
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Potential Process Intensification Benefits:
• Reduced cost of CO2 and N2 separation (compared to cryogenic or PSA)
• Reduced oxygen requirements
• Low-temperature purification
• Reduced # components
• Reduced compression energy by over half

Potential Impediments:
• Poisoning of Pt catalyst by CO and H2S
• Reverse water gas shift reaction CO2 → CO → catalyst poisoning
• Catalyst deactivation by particulate matter
• PEM degradation
• Limited EHP experience with complex gas mixtures



Overall Goal:
To develop and demonstrate an innovative electrochemical hydrogen pump (EHP) technology 
that will significantly reduce the costs of clean hydrogen production, specifically from small-
scale (5- 50MW) biomass gasification units.

Objectives:
• Demonstration of a custom anode catalyst that is tolerant to CO at concentrations 

of 0.1- 0.5%.
• Demonstration of hydrogen pressurization in a 10x82cm2 cell stack up to at least 70 bar, 

enabled by membrane advancements to reduce contaminant crossover and maintain high 
purity

• Advance the Technology Readiness Level from TRL 3 to TRL 4
• Generate and disseminate a comprehensive operating dataset and cost analysis for TEA 

analysis 

Project Objectives
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Experiment Schematic
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1- End plate
2- Current collector
3- Single-channel serpentine graphite 
flow field

4- Gas diffusion layer
5- Catalyst layer
6- Proton exchange membrane (PEM)

Membrane electrode assembly (MEA)

Experiment Test Cell
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No impurities:

Pt + H2 → Pt-H + H+ + e‾

H2

H+
e-

Presence of carbon monoxide (CO):

Pt + H2 → Pt-H + H+ + e‾

Pt + CO → Pt-CO

2 (Pt-H) + 2CO ⇌ 2 (Pt-CO) + H2

H2

H+

Goal: Achieving higher current 
in lower potential

 H2: Requires lower applied potential (0.12 V) for current density (e.g., 0.25 A/cm²).

 H2CO: Requires high applied potential (> 0.7 V) under similar conditions.

 PtC is significantly poisoned in the presence of CO

Research Gap: Catalyst Poisoning
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Low-Temperature (LT) EHP
 Temperature range: <100 0C

 Membrane: e.g.: Nafion (requires 

humidification for proton conduction)

o Humidifier and back pressure unit 

Strategies

1. CO-tolerant catalyst (Platinum/ruthenium on 

carbon support (PtRu/C))

2. Pulse oxidation

3. Air bleed

4. Increasing temperature (challenge: Nafion 

humidification)

High-Temperature (HT) EHP
 Temperature range: 100-220 0C

 Membrane: e.g.: PBI-based (No humidification/ 

no water management)

Strategies

1. Tailoring thermally stable catalyst 

o PtRu/C (100-150 0C)

o PtRu/RTO (>150 0C) (thermally stable support)

2. Fabricating thermally stable membrane

3. Pulse oxidation

4. Air bleed

Strategies for Mitigation
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CO-tolerant electrocatalyst (PtRu/C) 
Pt + CO ⇌ Pt–CO

Ru + H2O → (Ru–OH) + H+ + e−

(Pt–CO) + (Ru–OH) → Pt + Ru + CO2 + H+ + e−

 Anode: PtRu/C 3 mg/cm
2

 Membrane: N212 (58 µm)

 Cathode: Pt/C 3 mg/cm
2

 Temperature: 80 0C

H2CO_PtC vs PtRuC

 PtC: Requires high applied potential (> 0.7 V) for current density (e.g., 0.25 A/cm²).

 PtRuC: Requires lower applied potential (0.48 V) under similar conditions.

 PtRuC significantly mitigates CO poisoning compared to PtC.

Strategy 1: CO Tolerant Electrocatalyst PtRu/C
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Experiment Results: Hydrogen Recovery

Test Gas: 30% H2 + 1% CO 

HR 𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 = 𝑯𝑯𝟐𝟐𝒐𝒐𝒎𝒎𝒐𝒐
𝑯𝑯𝟐𝟐𝒊𝒊𝒊𝒊

 = = 𝒊𝒊𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎
𝒊𝒊𝒐𝒐𝒕𝒕𝒎𝒎𝒐𝒐𝒎𝒎𝒎𝒎𝒐𝒐𝒊𝒊𝒕𝒕𝒎𝒎𝒕𝒕

 H2CO_PtC vs PtRuC: PtRuC shows improved hydrogen recovery compared to PtC in the presence of H2CO

 PtRuC_H2 vs H2CO: Further advancements are required for PtRuC to enhance recovery compared to H2
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Blue line: Transient poisoning of the catalyst by 1% CO contamination at a constant current density of 0.2 A cm−2 for one hour

Red line: Pulsed oxidation technique on PtRu/C catalyst operated at 0.2 A/cm2 for 1 hr with a 5 A pulsing current; 0.3 s pulse width 
(pulse applied are not shown for clarity)

 Frequent periodic pulsing: Oxidizes CO to CO2, significantly mitigating CO poisoning.

Strategy 2: Pulsed Oxidation
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WashU-In house fabrication of thermally stable membrane

 Poly benzimidazole (PBI) membrane (dimension: 3” x3”)
 20 µm thickness 
 Doping agent: Phosphoric acid (for proton conduction)

Strategy 3: High Temperature Membrane



A SMARTER WAY TO A BETTER WORLD Management Presentation

HIGH PRESSURE TEST STAND



A SMARTER WAY TO A BETTER WORLD Management Presentation

PROVEN, PATENTED, ELECTROCHEMICAL TECHNOLOGY 
PURIFIES AND COMPRESSES H2
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H2RENEW™ HYDROGEN ELECTROLYZER

High Pressure 
Separation 

& Compression

Separation & 
Compression

100 kg/Day Output

Helium Reclamation
(H2-He Separation)

50% COST ADVANTAGE AND A 50% REDUCTION IN EMISSION OF GREENHOUSE GASES

EXHAUST 
STREAM IN

(H2 + Contaminants)

99.999%
PURE HYDROGEN

CONTAMINANTS 
EXHAUSTED OUT



A SMARTER WAY TO A BETTER WORLD Management Presentation

H2RENEW™ - ADVANCED STACK DESIGN APPROACH

• Bulk H2 removal stage promotes efficiency
• Electrically serial cells
• Parallel flow-cells
• Constant current (Voltage float)
• Maximize utilization with final purification stage
• Electrically parallel cells
• Serial flow-cell
• Constant voltage (Current float)

30-50 cells 5-10 cells

Parallel Fluidic & 
Electrical Series

Series Fluidic & 
Electrical Parallel

The integrated advanced stack design resulted in maximum H2 recovery (>99%)



A SMARTER WAY TO A BETTER WORLD Management Presentation

H2RENEW™ - MODULAR SYSTEM APPROACH

Conceptual Design for 1 MT H2/day System (non-optimized) Conceptual Design for 1 MT H2/day System (improved packaging)



A SMARTER WAY TO A BETTER WORLD Management Presentation 2
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TECHNOLOGY ROADMAP DRIVES PRESSURE, CAPACITY, CONTAMINANTS, COST
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Development

Commercialization

2022 2023 2024 2025 2026

100 kg-H2/day
Platform

1K kg-H2/day
Platform

10K kg-H2/day
Platform

10K kg-H2/day
Platform

10K kg-H2/day
Platform

100 kg-H2/day
Platform

1K kg-H2/day
Platform

100 kg-H2/day
Platform

1K kg-H2/day
Platform

OVER TIME OUR H2RENEW PRODUCT TECHNOLOGY WILL GROW IN PRESSURE AND CAPACITY
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Biomass to Hydrogen Process: Case 1 Baseline
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Case 2: Intensified Process
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Case 3: Intensified Process w/o SMR
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• Feedstock is wood with 50% moisture on As-Received (AR) basis.

• LHV = 33.3 kWh/kg
• 336 TPD or 14000 kg/hr of bone-dry biomass.
• Equivalent size: 25 MWe  (assuming 60% efficiency of conversion of H2)
• Compression to 800 bar
• ASU specific power consumption: 213 kWh/t O2

• PSA and balance of plant guided by NREL Model: 
  Spath, P. et al. (2005) . NREL/TP-510-37408

Component C H N S O Ash

Wt% (dry 
basis) 46.64 6.02 0.35 0.14 46.52 0.31

Design Basis
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Gasifier Model

Gasifier Specifications

Parameter Value

Operating Temperature oC 800

Energy Source Indirectly heated from 
char combustion

Gasifier type Oxygen blown

Cold Gas Efficiency (LHV 
Basis) 83 %

• Pyrolysis model: Abdelouahed, L. et al. (2012) 
 Products include tar: – benzene, phenol, toluene,    
naphthalene.

• Combustion and gasification kinetic model (PFR):
      Abdelouahed, L. et al. (2012), 
      Puig-Gamero, M. et al. (2021)
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Results

27.5%
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Results
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Results
Case 1: PSA Case 2: EHP



Thank you

kumferb@wustl.edu
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• EXTRAS



Application to Biomass Gasification Plant
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NREL Reference Plant Model
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Mann, M. and D. M. Steward (2018) 
Current Central Hydrogen from 
Biomass via Gasification and 
Catalytic Steam Reforming:
 H2A Hydrogen Performance 
Analysis Model, NREL.



Preliminary Cost Savings Estimates
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• Estimated 20% reduction in total capital (installed) costs
• Reduced specific power consumption by more than 60%: 

 4.54 kWh/kg (for PSA and compression) to → 1.75 kWh/kg

cost savings of $0.47/kgH2 
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