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Motivation

« Clean Hydrogen Energy Earthshot
— Cost of $1/kg or less (80% reduction)
— Carbon intensity of 2 kg CO.,e / kg H,
— Achieved in 10 years

« Low-carbon, biomass-derived feedstocks are favorable for meeting the
clean standard
— Fossil sources would require CO, capture and utilization/sequestration
— Biomass + CCUS gives potential for carbon negative process

« Geographic distribution of biomass-derived feedstocks suggests ideal
scale for gasification plants (5-50 MW)

— Cost and efficiency must be improved through process intensification and
implementation of modular components
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Hydrogen Compression
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O Hydrogen has the highest gravimetric energy
density

O Hydrogen must be compressed at very high
pressure, between 200-950 bar, to be used in
technologies such as fuel cell vehicle
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Electrochemical Hydrogen Compression
o _
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Simultaneous Purification and Compression

Conventional Process EHP
= O Simultaneous purification +
. . . )
TE compression: Single unit

L No moving parts

Top dead center;

U Modular design

U Low energy consumption

Pressure swing Piston

adsorption compressor U No vibrations

O Multi step purification + compression
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Comparison with Mechanical Compression

Compression Energy (kWh/kg)
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Opportunities and Challenges

Potential Process Intensification Benefits:
* Reduced cost of CO, and N, separation (compared to cryogenic or PSA)
* Reduced oxygen requirements
» Low-temperature purification
* Reduced # components
« Reduced compression energy by over half

Potential Impediments:
« Poisoning of Pt catalyst by CO and H,S
» Reverse water gas shift reaction CO, — CO — catalyst poisoning
« Catalyst deactivation by particulate matter
 PEM degradation
« Limited EHP experience with complex gas mixtures

Washington University in St.Louis
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Project Objectives

Overall Goal:

To develop and demonstrate an innovative electrochemical hydrogen pump (EHP) technology
that will significantly reduce the costs of clean hydrogen production, specifically from small-
scale (5- 50MW) biomass gasification units.

Objectives:

« Demonstration of a custom anode catalyst that is tolerant to CO at concentrations
of 0.1- 0.5%.

« Demonstration of hydrogen pressurization in a 10x82cm? cell stack up to at least 70 bair,
enabled by membrane advancements to reduce contaminant crossover and maintain high
purity

* Advance the Technology Readiness Level from TRL 3 to TRL 4

« Generate and disseminate a comprehensive operating dataset and cost analysis for TEA
analysis

Washington University in St.Louis
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Experiment Schematic
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Experiment Test Cell

1- End plate
ANODE T| e'o =2 ll CATHODE 2- Current collector

3- Single-channel serpentine graphite
flow field

Inlet

H2 containing feed

. . . Hz
impurities® @

4- Gas diffusion layer
5- Catalyst layer
6- Proton exchange membrane (PEM)

Membrane electrode assembly (MEA)
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Outlet

Unused reactants
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Research Gap: Catalyst Poisoning
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Goal: Achieving higher current
Current density (A/cm?) in lower potential

O H,: Requires lower applied potential (0.12 V) for current density (e.g., 0.25 A/lcm?).
d H,CO: Requires high applied potential (> 0.7 V) under similar conditions.

O PtC is significantly poisoned in the presence of CO
Washington University in St.Louis
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Strategies for Mitigation

Low-Temperature (LT) EHP High-Temperature (HT) EHP

O Temperature range: 100-220 °C
0 Membrane: e.g.: PBl-based (No humidification/

O Temperature range: <100 °C

0 Membrane: e.g.: Nafion (requires

humidification for proton conduction) no water management)

o Humidifier and back pressure unit Strategies

1. Tailoring thermally stable catalyst

Strategies
1. CO-tolerant catalyst (Platinum/ruthenium on o PtRu/C (100-150°C)
carbon support (PtRu/C)) o PtRu/RTO (>150°C) (thermally stable support)
2 Pulse oxidation 2. Fabricating thermally stable membrane
3. Air bleed 3. Pulse oxidation
4. Air bleed

4. Increasing temperature (challenge: Nafion

humidification)
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Strategy 1: CO Tolerant Electrocatalyst PtRu/C

CO-tolerant electrocatalyst (PtRu/C) 07 ]

Pt+ CO = Pt-CO o.e ! _
Ru + H,0 — (Ru-OH) + H* + & _

S 0.5- i

(Pt-CO) + (Ru-OH) —» Pt+ Ru+ CO, + H* +e~ & ,,] 1
s |

5 0.3- i
O Anode: PtRU/C 3 y/em? !

0.2- i

d Membrane: N212 (58 pm) o] e

O Cathode: Pt/C 3 \g/cm? 00 —O—PtRuC |

d Temperature: 80 °C 0.25 0.50 0.75 1.00

Current density (A/cm?)

H,CO_PtC vs PtRuC
O PtC: Requires high applied potential (> 0.7 V) for current density (e.g., 0.25 A/cm?).

O PtRuC: Requires lower applied potential (0.48 V) under similar conditions.

O PtRuC significantly mitigates CO poisoning compared to PtC.
Washington University in St.Louis
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Experiment Results: Hydrogen Recovery
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0 H,CO_PtC vs PtRuC: PtRuC shows improved hydrogen recovery compared to PtC in the presence of H,CO

d PtRuC_H, vs H,CO: Further advancements are required for PtRuC to enhance recovery compared to H,
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Strategy 2: Pulsed Oxidation

Pulse potential ( >0.65 V) —— T T
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Blue line: Transient poisoning of the catalyst by 1% CO contamination at a constant current density of 0.2 A cm~2for one hour

Red line: Pulsed oxidation technique on PtRu/C catalyst operated at 0.2 A/cm? for 1 hr with a 5 A pulsing current; 0.3 s pulse width
(pulse applied are not shown for clarity)

O Frequent periodic pulsing: Oxidizes CO to CO,, significantly mitigating CO poisoning.
Washington University in St.Louis

JAMES MCKELVEY SCHOOL OF ENGINEERING



WashU-In house fabrication of thermally stable membrane
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SKYRE

HIGH PRESSURE TEST STAND

Polarization Studies

Test conditions: 0.6
* Anode @10-15 psi (~ 1bar); 500 SCCM of H, (UHP) 30 osi ®
*  Humidification @ 40°C and cell @50°C 05 E
* H,is pumped to desired cathodic pressure by applying 0.1- _
2 o ¢ 750 psi
0.2 A/cm? prior to polarization study < 04
2 _ ° 4
£ 03 A 1500 psi o~
2
E 0.2 »
' ¢
®
0.1 é

A‘

0
0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350

Current Desity (mA/cm?)

A SMARTER WAY To A BETTER WORLD Management Presentation



SKYRE

PROVEN, PATENTED, ELECTROCHEMICAL TECHNOLOGY
PURIFIES AND COMPRESSES H,

H2RENEW™ HYDROGEN ELECTROLYZER

6a
e (e)
L <=
(e) (e
EXHAUST > ¥ 1 P—
STREAM IN @ @ : .-
(H, + Contaminants) 5““3 .
|
99.999% 1
PURE HYDROGEN " ;
CONTAMINANTS
EXHAUSTED OUT €
High Pressure Separation & Helium Reclamation
Separation Compression (H,-He Separation)
& Compression 100 kg/Day Output

50% COST ADVANTAGE AND A 50% REDUCTION IN EMISSION OF GREENHOUSE GASES



SKYRE

H2RENEW™ - ADVANCED STACK DESIGN APPROACH

- Parallel Fluidic & . Series Fluidic &

Electrical Series Electrical Parallel Concept 1 Concept 2
Primary Stack Primary Stack
30-50 cells 5-10 cells Active Area: 81.6(cm2 Active Area: 81.6/cm2
<€ ><€ > Cell Count: 50(cells Cell Count: 25| cells
Mixture [7 — )Waste to Current Density: 0.224|A/cm2 Current Density: 0.448|A/cm2
From PPA WIW Vent
H2 Consumption 6.946|L/min H2 Consumption 6.946(L/min
Utilization 90.205|% Utilization 90.205(%
Remaining H2 0.754|/min Remaining H2 0.754|L/min
Total Flow 1.706|L/min Total Flow 1.706|L/min
WA M| N purified % H2 Out 44.21191 % H2 Qut 44.21191
H,
, Clean-Up Stack Clean-Up Stack
' Active Area: 81.6/cm2 Active Area: 81.6|cm2
Bulk Separation Stack Final Purification Stack . .
Component Component Cell Count: 5|cells Cell Count: 5|cells
Current Density: 0.244|A/cm2 Current Density: 0.244|A/cm2
e Bulk H, removal stage promotes efficiency
. Electricallv serial cells H2 Consumption:| 0.755045|L/min H2 Consumption:| 0.755045|L/min
y Purification: 100|% Purification: 100|%
*  Parallel flow-cells

*  Constant current (Voltage float)

* Maximize utilization with final purification stage
Electrically parallel cells

Serial flow-cell

*  Constant voltage (Current float)

A SMARTER WAY To A BETTER WORLD Management Presentation

The integrated advanced stack design resulted in maximum H, recovery (>99%)



H2RENEW™ - MODULAR SYSTEM APPROACH

NODE 1 02 Sensor

02500

MFCa0s

MFM202

ALY
= AL -
AL

Gas Management

Gas Management: .
9 and Contaminant Removal

and Contaminant Removal

H,0
(for 3 modules)

EHC Stack

H,0
Power Supply
H, Accumulator Power Supply Power Distribution
Py Distributi Stack Enclosure
ower Distribution HMI / Controls
(2 stacks per enclosure)

HMI / Controls

Conceptual Design for 1 MT H,/day System (non-optimized) Conceptual Design for 1 MT H,/day System (improved packaging)

A SMARTER WAY To A BETTER WORLD Management Presentation



Pressure (bar)

SKYRE
TECHNOLOGY ROADMAP DRIVES PRESSURE, CAPACITY, CONTAMINANTS, COST

Helium He

100 kg-H,/day 1K kg-H,/day 10K kg-H,/day
Platform Platform Platform

350 100 kg-H,/day 1K kg-H,/day 10K kg-H,/day
Platform Platform Platform

1K kg-H,/day
Platform

100 kg-H,/day

10K kg-H,/day
Platform

750

Platform

Development

Commercialization

2022 2023 2024 2025 2026

OVER TIME OUR H2RENEW PRODUCT TECHNOLOGY WILL GROW IN PRESSURE AND CAPACITY
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Case 2: Intensified Process

| Biomass Drying —: | Biomass Gasification —: : Syngas Cleanup -: : Steam Methane :
: l J' and Tar Reformer I and Compression I Reforming |
I i | I . o I I
| | I A T | |
I I ] \/ \ 1 '_)_’ - I
l I | | | e b= =] I | |
I | I I |
Biomass I : I : I
] > T 1 — I Multistage Compressor
| > — I | Air I :
: [1- 1 : — , I Steam
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Pure Hydrogen
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| | I I
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L ooy r | : Air |
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T Ly __‘ ‘ I JEHXN |
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Case 3: Intensified Process w/o SMR

""""""" A I Rinmnace Cacification 1 1 Sunaac Cleanun . 1 1~~~ ~—~—=—77=771
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I R | I — [ I |
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I Oxygen'. . | I I
I R - | 1 I
I SR S R A ] '
Boiler Feed Water i N Steam
Generator
L Pure Hydrogen
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Design Basis

» Feedstock is wood with 50% moisture on As-Received (AR) basis.

W1t% (dry
basis)

46.64 46.52

« LHV = 33.3 kWh/kg

« 336 TPD or 14000 kg/hr of bone-dry biomass.

» Equivalent size: 25 MWe (assuming 60% efficiency of conversion of H,)
« Compression to 800 bar

» ASU specific power consumption: 213 kWh/t O,

« PSA and balance of plant guided by NREL Model:
Spath, P. et al. (2005) . NREL/TP-510-37408

Washington University in St.Louis
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Gasifier Model

* Pyrolysis model: Abdelouahed, L. et al. (2012) Flue gas for biomass drying
Products include tar: — benzene, phenol, toluene, Dried biomass 1
naphthalene. e
 Combustion and gasification kinetic model (PFR): %
Abdelouahed, L. et al. (2012), Temperature o
Puig-Gamero, M. et al. (2021) pyrolysis " berolveis
product T Char Char
correlations e———— calculator
Gasifier Specifications —I— and
separator
Kinetic AN Yan
Pa rameter Va I ue reaction Char combustor
rates
. Combustion !
Operating Temperature °C 800 - — ‘—‘
| . | Reduction |
Indirectly heated from B . g Air
Energy Source ) Oxygen 4
gy Char Combust|0n IH N /Indirectheatingofgasiﬁer
Air
GaSiﬁer type Oxygen blown Air separation unit
Cold Gas Efficiency (LHV
ciency | 83 % Ash
Basis)

Washington University in St.Louis
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Results

18000 - [ | Dry Biomass feed to off gas combustor 1800 [ H, Production Rate
= - Dry biomass feed to gasifier
< - 1600 -
16000 - E 100 27.5%
g 14000 - E _
= O 1200
g. 12000 - 5 00 ]
c _

3 10000 - s 10997 N
9 ' S 800+ .
© 8000 - S =4 =4 S _ = ™
" . = S =S o N 3
© 6000 - - = = o 600- = -
£ ] ~ ]
2 4000 T 400+
m ] -
2 2000- 200 -

0 - 0 T T T

PSA EHP EHP without PSA EHP EHP without
. ) SMR . . SMR
Simulation Cases Simulation Cases
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Results

“N
T
;R‘ 12.0 Il Specific Biomass Consumption !m 8 [ Specific Electricity Consumption
o 1 <
< 115 s
x 0
S c 6 - 25 /0
= o
2 11.0 =
: l 4.5% :
c
0 10.5 2 4
O [e) - ™ <
7)) (&) ~ 7o) ©
] >
© -
g 10.0 1 ‘O
9 s
o g 2
;:_’ 9.5 - w
g 2
o kT)
w 90 8_ 0 T T I
PSA EHP  EHP without ) PSA EHP  EHP without
SMR
Simulation Cases Simulation Cases SMR
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Results

Case 1: PSA

Case 2: EHP

aLr
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16%
1200
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Thank you

kumterb@wustl.edu
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Application to Biomass Gasification Plant

REFERENCE PROCESS FOR HYDROGEN PRODUCTION VIA BIOMASS GASIFICATION

air
Syngas Cooler steam
J’ N
Gasifier| Scrubber Methane Water Gas
N N Compressor Reformer Shift Reactor Compressor to
Air | Fliten] pipeline
Separation 02 ( ) ( ) ( ) | Purification ( ) or
Unit (ASU) (Membrane or PSA) storage
H20 + CO - H2 + CO2 tank
N2 biomass or water particulates  sulfur €0z, €O, H20
solid waste
INTENSIFIED PROCESS ENABLED BY ELECTROCHEMICAL HYDROGEN PUMP
air Syngas Cooler steam Iilec(j:trochepmical
\‘/—\ ydrogen Pump
Gasifier Scrubber Water Gas (EHP)
02 Y Shift Reactor . tO.
ASU ) Fllter L me—— p|pe||ne
: : - - )—» : iy o Or
. '\ storage
H20 + CO = H2 + CO2 tank
N2 biomass or water particulates  sulfur
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NREL Reference Plant Model
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Preliminary Cost Savings Estimates

e Estimated 20% reduction in total capital (installed) costs
* Reduced specific power consumption by more than 60%:
4.54 kWh/kg (for PSA and compression) to - 1.75 kWh/kg

Reference Case .
(per kg H2, 2016 dollars) EHP Intensified Case

(per kg H2, 2016)

Cost of Hydrogen ] $7.41 Cost of Hydrogen e L $7.01
Feedstock Cost | $1.37 Eeedstock Cost | $1.37
Fixed Operating Cost I:l §0.26 Fixed Operating Cost |:| $0.24
Other Wariable Operating Costs I:l $0.25 Other Raw Material Cost D $0.21
Other Raw Material Cost I:' $0.21 Initial Equity Depreciable Capital D §0.12
Initial Equity Depreciable Capital D $0.15 Debt Interest D $0.08 R
Debt Interest I:I $0.10 Cash for Working Capital Reserve [I $0.02 COSt SthlngS of $0'47/I€gH2
Cash for Working Capital Reserve [| $0.03 ‘Yearly Replacement Costs H $0.02
Yearly Replacement Costs Il $0.02 Taxes | $0.01
Taxes Il $0.02 Other Non-Depreciable Capital Costs | $0.01
Other Non-Depreciable Capital Costsl $0.01 Principal Payment | $0.00
Principal Payment | $0.00 Decommissioning Costs | $0.00
Decommissioning Costs | $0.00 Other Variable Operating Costs -$0.07 D
- $050  $100  $150 8200 5250 5300 5(0.50) - 5050 $1.00 $150 5200 5250
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