Machine Learning Enhanced LIBS to Measure and Process Biofuels and Waste Coal for Gasifier Improved Operation DOE STTR Phase II - DE-SC0022696 24 April 2024

> Robert De Saro Energy Research Company

Agenda

- Team Members
- Approach
- Objectives
- Phase I Results
- Phase II Approach
- Phase II TABA and TEA Approach

Team Members

• ERCo

- R. De Saro (PI)
 J. Craparo
 L. Mulligan
- Lehigh University
 C. Romero
 - ≻Z.Yao
 - ≻O. Karadut

• GTI

- ≻J. Van Dyk
- ≻A. Soomro
- ≻A. Koutsostamatis
- SpG Consulting, LLC
 - S. Goff
- DOE NETL Manager
 S. Michalik

Supporting Members

- ThermoChem Recovery International (TRI)
- SunFuel Renewables
- Appalachian Region Independent Power Producers Association (ARIPPA)
- Fulcum Bioenergy

DOE SBIR/STTR Phase II

- Office of Fossil Energy and Carbon Management
 - Topic 21 Innovative Energy Systems
 - Subtopic f Component Technology Advancement in Coal Waste and Biomass Gasification Systems

FECM Mission

- ...Minimize the environmental impact of fossil fuels while working towards net-zero emission. ...Priority areas...include...hydrogen with carbon management...
- Net Decarbonize Electric Utilities by 2035

The Need – Hydrogen is Environmentally Friendly

- Particularly When Produced from Biomass and Coal Wastes Through Gasification.
- It Can Be Used When Electrification is Difficult (Aircraft, Steel, Concrete, for Instance).
- But Feedstock is Highly Heterogeneous Making It Difficult to Process and
- Makes Gasification More Expensive Than It Needs To Be

The Solution

- Combine Biomass and Coal Waste to Produce Hydrogen in a Gasifier
- Measure the Feedstock to Control the Gasification Process in Real Time
- Use Machine Learning Enhanced LIBS Instrument

Project Approach

- ERCo's OnSpecTM LIBS Probe
 - o Measure Elemental Spectra
 - In Real Time and In-Situ
- Lehigh
 - Machine Learning to Convert Spectra Into Actionable Parameters
 - Provide Samples, Process Feedstock for Analysis, Provide Lab Analysis.
- GTI
 - o Simulator to Predict Gasifier Performance Using the ML- LIBS Results
 - Provide Gasification Technology and Know-How
 - o TEA
- SpG Consulting, LLCTABA

Phase I Project Objectives

- Measure *in situ* and in near real time: HHV, Ash %, C, S, Si, Al, Na, K, Ca, Fe, fusion and slagging temperatures
- Use LIBS to measure the spectra of coal wastes and biofuels provided by GTI and Dominion
- Develop ML algorithms that use the LIBS data as input to measure the properties listed above.
- LIBS-AI measurements provided online to be used to better control gasifier operation
- Achieve an accuracy and precision that will provide commercial value to GTI.

Phase II Project Objectives

- Extend the Phase I measurement success by better simulating a commercially operating gasifier. For this we will increase our testing realism by:
 - Using a commercial-ready LIBS instrument;
 - Measuring the feedstock on a moving belt, rather than on a static platform as we did in Phase I;
 - Expand the sample pool including additional types of commercial biomass and coal refuse, as well as additional blend ratios suited for gasifiers
 - Incorporate the ML algorithms into the software of our commercialready LIBS instrument so as to achieve real-time data display as data is taken.
- Determine the exact gasifier performance from our measurements by using the ML-LIBS data as input to GTI's gasifier simulator.

Phase II Schedule

	Task	- 9/2023	↓ 10/2024	11/2023 م	► 12/2023	л 1/2024	2/2024 م	ч 3/2024	∞ 4/2024	o 5/2024	5 6/2024	5 7/2024	5 8/2024	5 9/2024	5 10/2024	<u> 11/2024</u>	5 12/2024	1/2025	s 2/2025	b 3/2025	3 4/2025	<u>४</u> 5/2025	र्ड 6/2025	ಜ 7/2025	۲ 8/2025 S
1	Kickoff Meeting		2		-			,	0		10		12	15		15	10	1/	10	15	20	21	22	25	27
2	Secure Samples																								
3	LIBS Testing																								
4	ML Processing																								
5	GTI's Simulators																								
6	PM																								

Phase II Deliverables

- Fully Automated OnSpecTM Commercial Instrument
- Single Push-Button Operation With Data Displayed In Real-Time
- Field-Capable
- Data and Conclusions
- Simulator Results
- Commercialization Feasibility and Plans

ERCo's Commercial LIBS System

Phase I Results

Phase I Results Summary

- All Project Feedstock Properties Accurately Measured
- R² over 0.98
- RSD Better Than 1.5% and Most Below 0.1%
- Signal to Noise Ratio of LIBS data: Excellent for all Elements
- Technical Breakthrough: We Can Get High Precision With Varied Feedstocks
- All Milestones Completed and Go/No Go Points Passed
- Feasibility Amply Proven

Value Proposition From Phase I Results

- Using Dynamic Control System With ML-Enhanced LIBS
- Oxygen Reduction
- Syngas Yield
- Improved Gasifier Availability
- Continual Measurements With Little Cost Per Measurement
- Payback 3.3 Months

Samples Obtained

Phase I Samples Tested

- Two Biomass as Received
- Two Coal Waste As Is
- 2 Blends**
 - Blend 1 25% Dominion Waste Coal, 75% GTI Biomass Wood
 - Blend 2 5% GTI Waste Coal, 95% GTI Biomass Wood

****** *Virtual* blends made by combining data from each material.

Blends

Analyses Completed by Certified Lab

- 1. Proximate analysis
- 2. Ultimate Analysis (C, H, N, S, O)
- 3. Ash composition
- 4. Trace element analysis
- 5. AFT to 2800°F
- 6. Heating value

LIBS Results: Signal-to-Noise

Wavelength (nm)	247.86	249.77	259.94	279.52	288.15	323.45	394.4	422.67	481.05	588.99	670.78	766.49	777.47
Material/Element	CI	BI	Fe II	Mg II	Si I	Till	ALL	Call	Zn I	Na I	Lil	кі	01
Wood Pellets	2522	8	105	2282	113	21	20	352	8	78	2	1423	6
Wood Chips	732	44	416	3076	218	97	38	843	29	505	17	2720	10
Wood Turnings	2367	7	77	3629	99	13	8	561	9	278	3	2248	8
∨ineyard Wood	212	7	776	2389	643	414	189	976	6	353	22	1113	5
S.A. Waste Coal	311	15	1009	2736	675	458	204	579	19	253	73	460	4
Dominion Waste Coal	129	9	721	1804	525	335	131	713	6	407	107	874	4

Outcome From ML-Enhanced LIBS

- C, S, Si, Al, Na, K, Ca, Fe, Mg, Ash
- Fusion Temperature and Heating Value

ML-LIBS Results Summary

	Target	Min	Average	Max	R²	RMSD	CV (RMSD/Average)
1	HHV (MAF)	8576	10650	14354	0.9998	31	0.29%
2	% Ash (Dry)	0.70	18.14	45.50	0.9988	0.550	3.04%
3	% Carbon (Dry)	43.749	52.08	73.84	0.9994	0.245	0.47%
4	% Sulfur (Dry)	0.11	0.52	1.20	0.9999	0.004	0.72%
5	IDT	1251	1317	1374	0.9998	0.622	0.05%
6	SiO ₂ in ash	19.45	47.63	63.60	0.9897	1.546	3.25%
7	Al_2O_3 in ash	2.62	16.84	27.59	0.9998	0.112	0.67%
8	Fe_2O_3 in ash	3.92	5.54	6.65	0.9975	0.055	0.99%
9	CaO in ash	0.06	8.60	26.66	0.9993	0.252	2.93%
10	MgO in ash	1.63	2.72	5.99	1.0000	0.011	0.39%
11	K ₂ O in ash	1.14	6.85	18.83	0.9994	0.145	2.12%
12	Na ₂ O in ash	0.25	0.53	0.80	0.9915	0.016	2.93%

MAF HHV

% Ash

ERCo

% Carbon

% Sulfur

IDT

$\% SiO_2$

%Fe₂O₃

%CaO

%MgO

$%K_{2}O$

%Na₂0

Phase II Results

Phase II Feedstocks

- 15 Feedstocks
- 2 mm and 500 Microns (0.5 mm) of Each
 - GTI Coal Waste
 - GTI Wood Pellets
 - Dominion Coal Waste
 - Three Blends of the Above
 - INL Woodchips
- Vineyard Biomass

Dominion Coal Waste

Wood Chips

Blend A – wood chips waste coal - 500 microns

Phase II Status

- All Feedstocks Obtained and Processed to 2 mm and 500 microns
- All Independent Lab Measurements Completed
- OnSpecTM On Site
- Conveyor Belt Operational
- All Current Milestones Completed
- Currently On Schedule

GTI's Gasifier Simulator

- Determine Liquidus Temperature Based on the Ca and Si Content
- This is Important to Determine if Slagging is Possible
- Fluidized Beds Would Be Adversely Affected By Slagging and Entrained Flow Would Benefit
- Use Simulator for Feedforward Control

Commercialization Study

TABA and TEA

- TABA Will Evaluate the Market
- TEA Will Evaluate the ML-Enhanced LIBS Economic Performance on Fluidized Bed and Entrained Flow Gasifiers

Technical and Business Assistance (TABA)

- Market assessment of LIBS for gasification applications for biomass and waste coal
- Market assessment of LIBS for alternate applications for municipal solid waste and waste plastics
- TechnoEconomic Analysis of LIBS in gasification processes
 - Commercial LIBS instrument cost estimate and manufacturing plan
 - Value Proposition
- Develop commercialization plan for LIBS covering all potential markets
- Support the development of Intellectual Property to protect the LIBS technology in gasification applications

Techno-Economic Analysis (TEA)

- Determine the Impact of the ML-Enhanced LIBS technology on GTI Energy's Fluidized Bed and Entrained Gasifiers
- The system scope considered in the process simulations and techno-economic analyses shall consist of:
 - Feedstock Delivery
 - Biomass Pre-processing
 - Gasification (single gasifier train)
 - Syngas Scrubbing

Design Cases for TEA

• Both Greenfield and Brownfield Scenarios Will Be Evaluated

Devenetor		Gree	Brownfield				
rarameter		Scen	Scenario				
Gasifier Type	U-C	FAS	R-0	GAS	U-GAS		
LIBS System	No	Vog	No	Voc	Vog		
Implemented	INO	Tes	INO	Tes	les		
	50% Bie	omass/	50% Bi	omass/	50% Biomass/		
Foodstock (1000 STDD)	50% V	Vaste	50%	Waste	50% Waste		
reedstock (1000 STFD)	Сс	al	С	bal	Coal		
	100% B	liomass	-	_			
Total # ofTEA Cases	Л			2	2 (Relative		
IUtal # UITEA Cases	٦ ا	-	4	<u> </u>	difference)		

TEA Methodology

- NETL's "Quality Guidelines for Energy System Studies (QGESS): Cost Estimation Methodology for NETL Assessments of Power Plant Performance".
- For the Greenfield Scenarios, the Levelized Cost of Syngas Is Calculated Using the Discounted Cash Flow Method
- For the Brownfield Evaluation, ML-Enhanced LIBS is Implemented as a Retrofit to an Existing Facility.

SLAG-PROFILE AND LIQUIDUS POINT (BLEND 2)

INFLUENCE OF CaO ON SLAG PROFILE

