Electrochemically Mediated Air Separation Modules (EM-ASM)

Robert Darling (PI) RTX Technology Research Center (RTRC) April 25, 2024 FE0032348

U.S. Department of Energy FECM/NETL Spring R&D Project Meeting April 23-25, 2024

RTRC **RTX** Technology **Research Center**

Project Overview

TimelineProject Start:Contract End:Duration:One budget period.	Oct 1, 2023 Sep 30, 2025 24 months \$1,619,431 \$1,250,000 \$369,431* \$59,109**	ObjectivesThis project taadvancing thereadiness of ascalable, efficiencyeffective, andseparation teeto enable highcombustion cagasification of	argets e technology a novel, cient, cost- durable electroc chnology that ge n-quality syngas arbon capture fo f biomass and wa	$M^{n}(L)$ +e $-O_{2}$ $1/K_{2}$ $M^{n}(L)(O_{2})$ -e chemically media nerates O_{2} of su production and or H_{2} production astes.	$ M^{n-1} (L) $ $ K_1 \int +O_2 $ $ M^{n-1} (L) (O_2) $ ated O_2 ufficient purity efficient pre- from
Federal Share: Cost Share: Funds Spent: * 22.8% cost share ** as of April 1, 2024		Partners RTRC RTRC RTX Technology Research Center Robert Darling Pl	UCDAVIS UNIVERSITY OF CALIFORNIA Ambar Kulkarni Modeling	Jenny Yang Synthesis	Fikile Brushett Test

Technology Background

Electrochemically Mediated Carbon Dioxide Separation

- Recent work by team members and others has demonstrated that CO₂ can be removed from air and flue gas by an electrochemically mediated process called electro-swing sorption (Hatton 2021)
- Quinones can be rapidly electrochemically reduced to hydroquinone
- Carbonyl groups on quinones become nucleophilic and capture CO₂ when reduced
- Oxidizing the adducts causes CO₂ to be released
- This process generates a gas stream that is concentrated in CO₂

- Reduced quinone must bind CO₂
- Oxidized quinone must release CO₂
- Fast quinone redox kinetics for low power input
- Quinone must tolerate electrolyte environment

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

Technology Background

Oxygen Capture Molecules

- Several reduced transition metal complexes reversibly bind O₂ with equilibrium constants ranging from 10-100. These values allow O₂ capture from air (preliminary analysis).
- The oxidized versions of these complexes are not known to bind O₂, making them good candidates for reversible O₂ binding and release.
- These macrocycles are easily functionalized to modify electronic properties which will impact their reduction potentials, oxygen binding capabilities, and solubilities

 $R_2 \xrightarrow{R_3} R_3$ $R_2 \xrightarrow{N_0} O \xrightarrow{N_0} R_2$ $R_1 \xrightarrow{R_1} R_2$

Iron(II) porphyrin

Co(II)(salen)

Ni(II)(tetraimine)

Literature supports oxygen electro-swing sorption concept

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

Technical Background

Electrochemical Reactors

- Need reactors with low specific energy (kWh/ton_{EPO2}) versus O₂ mass flux (kg m⁻² day⁻¹)
- This corresponds to low over-voltages at high current densities
- A lot of recent work on flow batteries has focused on improving these performance metrics

Need cells with specific impedance levels on par with recent flow batteries.

Technical Approach

Schematic Illustration of Project Elements and Roles

Technical Approach

Key Milestones

Owner	Milestone	Quarter	Key Milestone Title & Description	Measurable Criteria
UC Davis	2.4	8	Create library of 1 million candidates; estimate performance with machine learning	Candidate molecules can be rapidly screened against target metrics.
UC Irvine	3.4	7	Make 1-3 promising molecules at scale sufficient for reactor testing	Synthesized in sufficient quantity for testing in small reactor. Larger batch meets performance of small batches.
MiT	4.4	8	Derive relationships for electrochemical reactor supporting 10× scale-up at RTRC	Key performance indicators at $10 \times$ scale predicted within 20%
RTRC	5.3b	5	Set final sorbent and reactor requirements using all project input to date	Description of key metrics for this approach at the macroscale linked to molecular models and screening experiments and best values achieved.
RTRC	5.6	8	Defensible estimates for sorbent, reactor & system capital and operating costs	Predicted capital and operating costs based on performance measured during project

Molecular Modeling at UC Davis

- <u>Goal:</u> Use multiscale molecular modeling to ٠ the rational design accelerate of selective molecular adsorbents for O_2 capture
 - RBE functional, acetonitrile solvent

Significant distortion of the 6-crown ring is observed

Future Work: Theory-guided Design

Na⊕

Oxygen Separation Based on a Co(II)-Salen Platform

Big picture: Characterization of System based on Thermodynamics

Preliminaryκο₂per@ 25 °C, only the complexes of alkaline earth

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

UCI

Small Reactor at MIT

Potential system configurations

Design for Scale-up at RTRC

Four Process Diagrams Considered

on anode.

cathode.

design.

RTRC

All 4 approaches probably give high enough thermodynamic efficiency

💥 RTX

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

Future Plans

Testing, Development, and Commercialization

- UCI
 - Use IR and EPR to understand how cation and ligand affect speciation
 - Use UV-vis to see what factors favor 1:1 Co-O₂ (temperature, ligand, cation, solvent, etc.)
 - Probe O₂ release from Co-Salen O₂ adducts with cyclic voltammetry

• UC Davis

- Working to speed up computations to increase throughput (Generalized Gradient Approximation)
- Investigating possibility of hybridizing models with AI/ML
- MiT
 - Investigating cell designs appropriate for simultaneous reduction/oxidation while bubbling gas
 - Identifying sensors for quantifying oxygen levels in gas streams
- RTRC
 - Modeling rate capabilities, polarizations of 2, 3, and 4-stage reactors and incorporating into techno-economics
 - Quantifying suitable targets for thermodynamic and kinetic properties of capture compounds

Outreach and Workforce Development Efforts

- Project supporting graduate students at UC Davis, UC Irvine, and MIT
- Project plan includes a paid summer internship at RTRC

Summary

- Key findings binding constants for Co-Salen adequate, efficacy of electroswing being tested (CV), preliminary thermodynamic and kinetic analyses promising
- Future plans molecular modeling, synthesis and bench-scale evaluation of molecules, reactor development, and process modeling

Key take aways

- Electroswing approach to air separation analogous to CO₂ separation
- Theoretically suited to smaller process units with low work of separation
- Working to find molecules that perform all necessary functions

Acknowledgement and Disclaimer

- Acknowledgment: "This material is based upon work supported by the Department of Energy Office of Fossil Energy under Award Number(s) DE-FE003248."
- Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Appendix

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

Organization Chart

Electrochemically Mediated Air Separation Modules (EM-ASM)

Gantt Chart

At least one technical milestone per quarter

One 24-month budget period

	Project Tasks and Milestones		Resource	Q1	Q2	Q3	Q4	Q5	Q 6	Q7	Q8
DTDC	Task 1	Task 1: Project Management and Planning	RTRC	1.4,1		61	7, 1.	8			1.9
NINC	Subtask 1.1	Project Management Plan (PMP)	Darling								
RTX Technology Research Center	Subtask 1.2	Technology Maturation Plan (TMP)		1.2a							1.2b
	Subtask 1.3	Societal Considerations and Impact		1.3a						1	<mark>1.3b,c</mark>
	Task 2	Molecular Modeling	UCD								
	Subtask 2.1	Develop Theory-Based Performance Metrics for Previously Reported O ₂ Sorbents	Kulkarni		241						
	Subtask 2.2	Refine Computational Protocols				+		22			
	Subtask 2.3	Optimize Performance of Known Sorbents									2.3
	Subtask 2.4	Bottom-up Molecular Design and Screening									2.4
	Task 3	Synthesis and Screening (UC Irvine)	UCI								
	Subtask 3.1	Develop Protocol for Evaluting Sorbents	Yang		3.1						
UCI	Subtask 3.2	Screen First Generation Compounds				3.2					
	Subtask 3.3	Molecular Design of Improved Compounds						•		3.3	
	Subtask 3.4	Scale Synthesis of Best Candidates for Reactor									3.4
	Task 4	Small Reactor (MIT)	MIT								
	Subtask 4.1	Build Experimental Testbed for Screening Materials	Brushett		4.1						
	Subtask 4.2	Screen Initial and First-Generation Materials for O ₂ Operation				+	4.2				
	Subtask 4.3	Refine Electrochemical Platform Design						+	4.3		
	Subtask 4.4	Develop Design Criteria Suitable for Reactor Scale-up									 4.4
	Task 5	Design for Scale-up (RTRC)	RTRC								
	Subtask 5.1	Draft Sorbent and Reactor Metrics	Darling		5.1						
RTRC	Subtask 5.2	Conceptual Designs	Darling			5.2					
	Subtask 5.3	Detailed Cell Models	Darling				5.	.3a,b			
RTX Technology	Subtask 5.4	System Integration Study	Emerson							5.4	
Neseurch Center	Subtask 5.5	Scale-Up to 25 cm ² Cell	Darling								5.5
	Subtask 5.6	Techno-Economic Analysis	Darling								5.6

UNIVERSITY OF CA

Approved for public release. This page contains no technical data subject to the EAR or the ITAR.

Background

Air Separation Technologies

- Pure oxygen supports low-cost hydrogen production via modular gasification
- Air separation is energy intensive, and the most efficient methods do not scale down to rates that support modular gasifiers

Process	Energy (kWh/ton _{EPO2})	Production (ton/day)	O ₂ Purity (%)
Theoretical minimum	53	-	100%
Cryogenic distillation	220	> 300	> 99%
Pressure swing absorption	430	< 100	95%
Hollow fiber membrane	275	< 25	< 40%
Hollow fiber membrane OBIGGS	1000	~ 1	28%
High temperature electrochemical, O	1500	Lab scale	> 99%
Low temperature electrochemical, H+	3200	Lab scale	> 99%

Seek a new method for separating oxygen from air that can be scaled down for modular gasifiers

End of Slides