

2024 FECM/NETL Spring R&D Project Review Meeting, April 23-25, 2024

Microwave-Assisted Dehydrogenation of Fossil Fuels Using Iron-Based Alumina Nanocomposites

Award No.: DE-FE0032086 Award Recipient: The University of Texas at El Paso Principal Investigator: **Evgeny Shafirovich Graduate Research Assistants:** Zachary A. Chanoi (PhD Student) Laura A. Martinez (M.S. student) Victoria I. Reyes (M.S. student) Maria M. Reidpath (retired), **Program Manager:** Alison E. Metz 8/15/2021 - 8/14/2024 **Period of Performance:** Pending NCE to 1/15/2025 \$400K Amount:

The Students

Victoria Reyes

Graduated with M.S.
 in 2022, with a thesis
 on the synthesis of
 Fe/SiC.

Laura Martinez

 M.S. student studying thermogravimetric analysis of FeAl_xO_y combustion synthesis.

Zachary Chanoi

 Ph.D. student studying microwave-assisted production of H₂ from hydrocarbons.

Together we have accomplished:

1 M.S. Thesis 1 journal article published, 1 under review 8 conference presentations

Peer-reviewed Journal Articles:

"Dielectric and magnetic properties of microwave-absorbing FeAl_xO_y fabricated via solution combustion synthesis," *Ceramics International,* (2024), Under-review.

"Toward a tunable fabrication of multifunctional iron-aluminum spinels via solution combustion synthesis: The effects of fuel, heating mode, and Fe:Al precursor ratio," *Ceramics International* 49 (2023) 39049-39058.

Theses/Dissertations:

Reyes, V.I., "Fabrication and characterization of iron-based catalysts for the dehydrogenation of fossil fuels," M.S. Thesis, The University of Texas at El Paso, 2022.

Presentations:

2023 AIChE Annual Meeting, Nov. 5-10, 2023, Orlando, FL.

2023 FECM/NETL Spring R&D Project Review Meeting, April 17-20, 2023, Pittsburgh, PA (*honorable mention of student presentation*).

13th U. S. National Combustion Meeting Organized by the Central States Section of the Combustion Institute, March 19-22, 2023, College Station, TX.

2022 AIChE Annual Meeting, Nov. 13-18, 2022, Phoenix, AZ.

2022 Spring Technical Meeting of the Central States Section of The Combustion Institute, May 15-17, 2022, Detroit, MI, Paper 2B04 (*First Place for Technical Merit in the Combustion Art Competition*).

Student Conferences:

2024 Southwest Emerging Technology Symposium, April 17-18, 2024, El Paso, TX.

2023 Southwest Emerging Technology Symposium, April 24-25, 2023, El Paso, TX.

3/52 2022 Southwest Emerging Technology Symposium, April 12-13, 2022, El Paso, TX.

Where this project has taken us

The Students

- The demand for hydrogen is increasing dramatically from **120 Mt** (2020) to a projected **530 Mt** (2050) [1].
- Hydrogen (H₂) is necessary for developing clean energy technologies and many other important applications. **95%** of H₂ comes from fossil fuel.
- Steam reforming of methane (CH₄) is the main method for H₂ production, but it also produces lots of CO₂.
 - $8.5 10 \text{ kg of CO}_2 \text{ per 1 kg of H}_2$

5/52 [1] Hermesmann et al. 2022. Progress in Energy and Combustion Science

Using microwaves to split fossil fuels

- Microwave-assisted, thermocatalytic, dehydration of fossil fuels offers the potential to produce H₂ without CO₂.
- Carbon is stored as valuable carbon nanotubes (CNT).
- Need a material that is both catalytically active and a good microwave-absorber.

7/52

Why microwaves?

• Microwaves enable instantaneous and volumetric heating of materials.

• Improves energy efficiency and selectivity of reactions.

Why microwaves?

9/52

Solution combustion synthesis (SCS)

- Technique for fabrication of nanomaterials
 - Rapid and simple
 - Energy efficient and scalable [3]
 - Large design space enabled by many synthesis parameters

Overview

Background **Tunable catalyst combustion synthesis: Synthesis** Affect combustion parameters: behavior Fuel Fuel-to-oxidizer ratio Heating mode Salt concentration pН

Catalysts are catalytically active and excellent microwave absorbers:

Total Evolved Gas Composition

100 .

Alter

material properties of

metal oxide

catalysts

11%

significant differences:

 H_2

13%

Objectives

- 1. To determine optimal parameters of **solution combustion synthesis** for the fabrication of **iron-based alumina nanocomposites** with superior catalytic activity, microwave absorptivity, and ferrimagnetic properties.
- 2. To determine the effectiveness of the iron-based alumina nanocomposites in the microwave-assisted catalytic decomposition of crude oil, diesel fuel, and gasoline in terms of hydrogen selectivity and yield.
- 3. To investigate regeneration of the iron-based alumina nanocomposites by microwave-assisted gasification of the formed carbon and by magnetic separation of the catalyst particles from the carbon byproducts.

Abbreviated objectives

- 1. Optimize catalyst **production** via solution combustion synthesis.
- 2. Optimize catalyst **properties** during microwave-assisted dehydrogenation.
- 3. Optimize catalyst **sustainability** post-dehydrogenation.

Timeline and milestones

Year 1		Year 2			Year 3			NCE					
08/21-08/22		08/22-08/23			08/23-08/24			08/24-01/25					
Catalysts produced via SCS and characterized. Uptimal synthesis conditions for catalysts that provide the highest H ₂ yield and selectivity determined. Efficacy of catalyst regeneration via magnetic								netic					
	Opt	Year 08/21-0 Cataly SCS ar Optimal sy the	Year 1 08/21-08/22 Catalysts pr SCS and cha Optimal synthe the high	Year 1 08/21-08/22 Catalysts produce SCS and character Optimal synthesis conthe highest H	Year 1 0 08/21-08/22 0 Catalysts produced via SCS and characterized Optimal synthesis condition the highest H ₂ yield	Year 1 Year 2 08/21-08/22 08/22 Catalysts produced via SCS and characterized. 0 Optimal synthesis conditions f the highest H ₂ yield and th	Year 1 Year 2 08/21-08/22 08/22-08/23 08/21-08/22 08/22-08/23 Catalysts produced via SCS and characterized. 08/21-08/23 Optimal synthesis conditions for cat the highest H ₂ yield and select Efficacy of separation and select	Year 1 Year 2 08/21-08/22 08/22-08/23 Catalysts produced via SCS and characterized. Optimal synthesis conditions for catalyst the highest H ₂ yield and selectivit Efficacy of cat separation and via	Year 1 Year 2 08/21-08/22 08/22-08/23 Oglia 0 Catalysts produced via We a SCS and characterized. We a Optimal synthesis conditions for catalysts that the highest H ₂ yield and selectivity det Efficacy of catalyst separation and via Boud	Year 1 Year 2 Year 2 08/21-08/22 08/22-08/23 08/23 Catalysts produced via SCS and characterized. We are here Optimal synthesis conditions for catalysts that prothe highest H ₂ yield and selectivity determine Efficacy of catalyst regender separation and via Bouduard	Year 1 Year 2 Year 3 08/21-08/22 08/22-08/23 08/23-08/24 Ogeneration Ogeneration Ogeneration Catalysts produced via SCS and characterized. We are here Optimal synthesis conditions for catalysts that provide the highest H ₂ yield and selectivity determined. Efficacy of catalyst regeneration and via Bouduard reacted	Year 1 Year 2 Year 3 08/21-08/22 08/22-08/23 08/23-08/24 08/21-08/22 08/23-08/24 Catalysts produced via SCS and characterized. We are here Optimal synthesis conditions for catalysts that provide the highest H ₂ yield and selectivity determined. Efficacy of catalyst regeneration vis separation and via Bouduard reaction determined of the second determined of the highest H ₂ second determined	Year 1 Year 2 Year 3 N 08/21-08/22 08/22-08/23 08/23-08/24 08/24 08/21-08/22 08/22-08/23 08/23-08/24 08/24 08/21-08/22 08/22-08/23 08/23-08/24 08/24 08/21-08/22 08/22-08/23 08/23-08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 08/24 09/24 08/24 08/24 08/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 08/24 08/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24 09/24<

Methodology

- 1. Fuel: glycine (G) vs. citric acid (CA)
- 2. Heating mode: furnace (F) vs. hotplate (H)
- 3. Fe/Al ratio: iron-lean (1:2), balanced (1:1), and iron-rich (2:1)

	1:2	1:1	2:1
		Citric Acid	
Hotplate	1:2-CA-H	1:1-CA-H	2:1-CA-H
Furnace	1:2-CA-F	1:1-CA-F	2:1-CA-F
		Glycine	
Hotplate	1:2-G-H	1:1-G-H	2:1-G-H
Furnace	1:2-G-F	1:1-G-F	2:1-G-F

15/52

Glycine combustion

- Solid-phase formation lasted about 10 seconds.
- Visible flame depending on the Fe:Al molar ratio.

Differences between combustion heating mode

Hotplate

 For glycine, products synthesized in the furnace were more homogenous of color, while products made on the hotplate had more dendritic structure.

VS.

Morphology

- Glycine products had an abundance of micropores.
- Citric acid products were characterized by thin flake-like structures.

X-Ray diffraction

- For all products except Fe:Al molar ratio 1:2, the typical diffraction pattern for spinels was observed (F \overline{d} 3m).
- CA-derived catalysts had γ-Fe₂O₃ structure, while G-derived catalysts had FeAl₂O₄-Fe₃O₄ structure.

Objective 1

Objective 1

- High specific surface area achieved
- Strongly dependent on fuel and heating mode

19/52 [4] Pehlivan et al. Journal of Materials Research and Technology 8, (2019).

Microwave heating performance

2:1

Fe:Al

1:1

1:2

- Initial heating rate was higher for G-derived catalysts.
- 1:1-G-F had remarkably low heating rate compared to other products due to lower penetration depth.

Dehydrogenation procedure

Objective 2

Dehydrogenation procedure

Objective 2

Dehydrogenation procedure

Objective 2

Objective 2

Objective 2

Dehydrogenation procedure

Bags are moved to inverted graduated cylinder to measure yield.

Diesel dehydrogenation – SCS fuel

Diesel dehydrogenation – SCS Fe:Al ratio

Diesel vs. gasoline dehydrogenation

	Pre-DH FeAl _x O _y (311)	Post-DH FeAl _x O _y (311)
Lattice parameter (Å)	8.21	8.27
Crystallite size (nm)	12.5	13.5

	Pre-DH FeAl _x O _y (311)	Post-DH FeAl _x O _y (311)
Lattice parameter (Å)	8.20	8.22
Crystallite size (nm)	9.5	14.2

	Pre-DH FeAl _x O _y (311)	Post-DH FeAl _x O _y (311)
Lattice parameter (Å)	8.33	8.18
Crystallite size (nm)	6.4	33.6

	Pre-DH FeAl _x O _y (311)	Post-DH FeAl _x O _y (311)
Lattice parameter (Å)	8.27	8.18
Crystallite size (nm)	5.3	16.7

34/52

40

2:1-CA-H

Bulbed regions

Speckled growth regions

2:1-CA-H

Bulbed regions

2:1-CA-H

- Segregation of Fe from FeAl_xO_y
- Formation of carbon on FeAl_xO_y regions

2:1-CA-H

2:1-G-H

• Some regions of G-derived products retained their porous structure seen before dehydrogenation.

2:1-CA-H

2:1-G-H

• However, other regions looked like CAderived products but with less speckles.

2:1-CA-H

2:1-G-H

• However, other regions looked like CAderived products but with less speckles.

2:1-G-H

 Visible regions of substantial carbon nanotube growth

45/52

UEP

1:1-CA-H

• CA-derived products appeared to have less regions of carbon nanotubes.

Catalyst regeneration

- Deactivation of catalysts in microwave-assisted reactions is due to two main reasons:
 - Accumulation of solid carbon (coking)
 - Formation of microwave-reflecting phases like α -Fe.

Magnetic separation for catalyst regeneration

• As seen with SEM, the growth of carbon nanotubes on the extremely **magnetic** metallic iron made magnetic separation unfeasible.

Post-dehydrogenation catalyst

Entire body is magnetic

Boudouard reaction for catalyst regeneration

 At high temperatures, Boudouard reaction consumes solid carbon and CO₂ forming CO:

 $C + CO_2 \rightleftharpoons CO$

 In a tube furnace, we heated spent catalysts for 2 hr at 900°C while flowing CO₂.

Boudouard reaction for catalyst regeneration

 At high temperatures, Boudouard reaction consumes solid carbon and CO₂ forming CO:
 Removal of carbon and CO₂ forming CO:

$$C + CO_2 \rightleftharpoons CO$$

Removal of carbon and dissolving of α-Fe back into FeAl_xO_v

 In a tube furnace, we heated spent catalysts for 2 hr at 900°C while flowing CO₂.

Boudouard reaction for catalyst regeneration

- After Boudouard, the catalysts were reused in a dehydrogenation test.
- Selectivity remained consistent, but yield was lower.
- G-derived catalysts appear more regenerable than CA-derived ones.

• **Objective 1**: Small changes in combustion synthesis parameters significantly affect material properties.

- CA-derived catalysts with up to 10x higher specific surface area
- G-derived catalysts had FeAl₂O₄-Fe₃O₄ structure, while CA-derived catalysts had γ-Fe₂O₃.
- **Objective 2**: G-derived catalysts had H₂ selectivity up to 74%, outperforming the best CA-derived catalyst by 22%.
 - The SCS fuel was the most significant synthesis parameter affecting performance.
 - Diesel dehydrogenation had better selectivity and yields versus gasoline.
- **Objective 3**: Boudouard reaction can remove both carbon residue and remove microwave-reflecting phases. *Ongoing research*.

Thank you!

Questions?

Backup slides