OXYIUM: Oxygen Integrated Unit for Modular Biomass Conversion to Hydrogen DE-FE0032350

Koyel Bhattacharyya PARC/SRI

PM: Sarah Michalik

U.S. Department of Energy National Energy Technology Laboratory Carbon Management Project Review Meeting April 23 - 25, 2024

Project Goal

- Modular biomass gasification through modular oxygen production
- Biomass conversion enables low-emissions hydrogen production
- Distributed biomass waste requires localized gasification units
- Pure hydrogen production (> 99 %) from biomass conversion requires pure oxygen (> 95 %) to prevent formation of undesired byproducts and the need for downstream purification

Project Goal

- Challenge: SoA large-scale air separation technologies (e.g., cryogenic isolation) are either not economical or are infeasible at small, modular scale
- **Objective:** Develop a fast, high-capacity, reversible oxygen sorbent that enables efficient gasification of biomass, coal, waste, etc., in small, modular units

Project Overview

- Funding: \$1.6M total, \$1.25 federal share
- Period of performance: 24 months (Oct 2023 Sept 2025)
- Objectives:
 - Demonstrate feasibility of reversible O_2 capture at > 6 wt-%
 - Technoeconomic analysis showing lower cost than SOA O_2 units for 5 50 MWe H₂ production plants
 - Start TRL 2; End TRL 3-4
- Distinctive features
 - Captures O_2 from air, not N_2 , reducing energy and equipment needs
 - High reversible O₂ capacity
 - Long lifetime due to stability of polymer walls and room-temp operation
 - ~2-min cycle time due to sorbent mesoporosity

Project Overview

Enabled by:

- PARC/SRI's patented amine aerogel platform, demonstrating high and tunable porosity and amine content
- Chemical functionalization with reversible O₂ capturing groups

- Immobilization in a porous sorbent provides high specific surface area (>300 m²/g)
- Pore tuning will enable rapid rates of gas transport, bulk diffusion, and high O₂ uptake
- Key innovation: Eliminate inert support material and chemically bind Co²⁺ to sorbent amine groups
- Co(II) center geometry will force a
 1:1 Co:O₂ stoichiometry, rather ____
 than traditional 2:1 ratio, thereby
 doubling the potential O₂ capacity

Project Team

Aerogel development, Fixed bed testing, TEA & LCA

- Dr. Koyel Bhattacharyya
 - Principal investigator
 - Sorbent design & synthesis
- Dr. Gabriel Iftime
 - TEA & LCA support
- Dr. Ranjeet Rao
 - Sorbent synthesis & characterization
- Bishal Karki
 - Sorbent synthesis

- Dr. Jon Bachman
 - Sorbent characterization & testing
- Dr. Rahul Pandey
 - Sorbent characterization & testing
- Dr. Jin Ki Hong
 - Fixed bed design, build, & testing

Project Team

Process design (Aspen)

Manufacturer of modular O₂ ASU

Design and simulation of Air Separation Unit (ASU)

Commercialization adviser

Project Tasks

- Sorbent synthesis
- Analysis set-up
- O₂ capture/release demonstration
- Sorbent scale-up to > 25 g
- Bench-scale prototype system demonstrating capture
- Modeling of O₂ absorption module (Simacro)
- Technoeconomic analysis and commercialization outlook
- Key milestones: > 4.5 mmol N/g sorbent, > 2 mmol Co²⁺/g, production at > 25 g scale

Technology Background

Pressure swing sorbent based on PARC's porous amine polymer synthesis platform

PARC polyamine aerogels synthesized for CO₂ capture:

High surface area polymers with Amine loading from 3 – 14 mmol N/g

Based on work funded by the U.S. Department of Energy under Award Number FE-0031951.

Project Scope

Envisioned operation:

Comparison to State of the Art

Material	Leading Zeolite (LiX)	Co(II)-Salen in binder	Leading-MOF sorbent	PARC OXYIUM sorben	
Status	Commercialized	R&D	R&D	R&D	
Equilibrium O ₂ loading [wt-%/g]	N/A (N ₂ selective)	1.2%	< 7%	> 6% (10.5% theoretical)	
O ₂ /N ₂ selectivity	< 6 (N ₂ /O ₂)	N/A	20	~ 20	
Cycle time [min/cycle]	< 1	10	30	~2	
Sorbent durability [years]	3-10	Unknown	Poor	> 1	
Sorbent cost [\$/kg]	40 - 60	45	50-100	25-30	
O ₂ cost [\$/kg O ₂]	<mark>0.115</mark> (PSA)	0.268	Hi <mark>gh</mark> (no data)	~ 0.05	
Pore size [nm]	< 0.9	<1 <1		10-100's	
Moisture sensitivity	High	High High		Low	
Bed size factor [lbs sorbent/tonnes O ₂ /day]	100-200	12,600	No data	102 (sum of two beds)	
Air Unit emissions [kg CO ₂ /tonne O ₂]	159	N/A	N/A	27	

Synthetic Pathway

- 1. Modify existing high-porosity, high-amine polymers for Co(II) chelation
- 2. Incorporate Co(II) into polymer to form Co-sorb
- 3. Reversibly incorporate oxygen into Co-sorb

1. Amine polymer synthesis

Polymer ID	Amine content (mmol N/g)
T641	4.0
T643	9.5
T646	12.4
T6410	14.0
Lewatit VPOC 1065 (commercial)	6.0

2. Co(II) incorporation

UV-Vis determination of Co(II) uptake by polymer

- Preliminary testing showing ability of sorbent to adsorb Co(II) and of UV-Vis to quantify adsorption performed with commercial Co(II) compound
- Significant Co(II) adsorption observed, up to 3.7 mmol Co(II)/g
- PARC polymers showed linear correlation between amine content and Co(II) adsorption
- PARC polymers adsorbed ~2x more Co(II) than commercial resin for the same amine content, indicating superior, open porosity of PARC material

3. Reversible oxygen uptake

TGA determination of reversible oxygen adsorption/desorption

- Preliminary testing shows ability of Co-sorb to adsorb/desorb O₂ and of TGA to quantify O₂ uptake
- Testing performed with dry 21 % O_2 in N_2 gas
- Mass increase with oxygen addition, mass loss with heat/absence of oxygen, as expected

Next steps

- Adsorption of tetra-amino Co(II) into amine sorbent
 - Concurrent synthesis of tetraamino Co(II) complexes
- Increase Co(II) loading in Co-sorb

- Currently < 30% of amines occupied by Co(II), many of which are buried away from pores, but some of which are likely available with better pore swelling
- Reduce hygroscopicity of Co-sorb
 - Current Co-sorb requires heating to release water, but goal is to reduce water-sensitivity to permit intake of ambient air for O₂ separation regardless of humidity

Conclusions

- Amine sorbent synthesized with up to 14 mmol N/g
- Co(II)-containing Co-sorb synthesized with at least 3.7 mmol Co/g sorbent
- Reversible oxygen adsorption/desorption demonstrated for at least four cycles
- Characterization methods verified:
 - Elemental analysis for amine content of sorbent
 - UV-Vis for Co(II) uptake by sorbent
 - TGA for O₂ uptake by Co-sorb
- Fixed-bed reactor planning and building underway

Thank you!

Gantt Chart and Work Structure

Task/Subtask Name	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 5	Qtr 6	Qtr 7	Qtr 8			
Task 1.0 - Project Management and Planning											
									l	Project Management	Fixed bed testing
Subtask 1.1 – Project Management Plan	D									PARC, Task 1	PARC, Task 5
Subtask 1.2 – Project Maturation Plan	D							D	_		
Task 2.0 - Sorbent synthesis										↓	•
Subtask 2.1 – Synthesis of amino polymer		D							C	PARC, Task 2	SIMACRO Task 6
Subtask 2.2 – Synthesis of Co ²⁺ sorbent				D		D					
Task 3.0 - Sorbent characterization										Ĵ,	Ļ
Subtask 3.1 – Develop and validate testing procedures			D							Sorbent Testing	Process TEA and LCA,
Subtask 3.2 – Detailed testing of Co ²⁺ sorbents						D				PARC, Task 3	PARC, SIMACRO, PCI
Task 4.0 - Sorbent scale-up and characterization											Task 7
Subtask 4.1 – Scale-up selected formulations								D		Sorbent Scale-un	
Subtask 4.2 - Measure sorbent physical properties								D	•	PARC, Task 4	
Task 5.0 – Fixed bed testing											
Subtask 5.1 – Building fixed-bed column					D						
Subtask 5.2 – Fixed-bed column testing of sorbents							D				
Subtask 5.3 – Optimization of fixed-bed process								D			
Task 6.0 – Air separation unit (ASU) modeling							D				
Task 7.0 – Technoeconomic and life cycle analysis				D				D			

OXYIUM Breakthrough Measurement P&ID

Reactor OD	25.4	mm
Reactor ID	23	mm
Bed apparent density	0.23	gram/mL
Material loading	5	grams
O2 capacity	0.5	mmol/gram
Bed height	5.2	cm
O ₂ to be adsorbed	2.5	mmol O ₂
O ₂ to be adsorbed	56	mL O ₂ at STP
Air flow for O_2 adsorption	100	mL at STP
Breakthrough time	160	sec

