Producing Clean Hydrogen Using a Modular Two-Stage Intensified Membrane-Enhanced Catalytic Gasifier

Topic Area: AOI 1 – Clean Hydrogen Cost Reductions via Process Intensification & Modularization for Hydrogen Shot Funding Opportunity Announcement (FOA) Number: DE-FOA-0002400: Clean Hydrogen Production, Storage, transport, and Utilization to Enable a Net Zero Carbon Economy

> Award#:DE-FE0032191 PI: Debangsu Bhattacharyya Co-PI: John Hu, Oishi Sanyal

Department of Chemical and Biomedical Engineering, West Virginia University

Annual review meeting, Pittsburgh April 23, 2024

Backgrounds

- Gasification of biomass is the key enabling technology in this project.
- Most previous works were focused on gasification at large scale and mainly for power production, not for production of ultra-pure H₂ production, using coal in general, along with other feedstocks. There were very few commercial deployments.
- Modular gasification (5-50 MWe) offers advantages due to considerably lower capital investment, distributed deployment, flexible operation using multiple feedstocks, niche applications, etc.
- However, conventional modular gasification suffers due to economy of scale thus making them costlier per unit of product(s) compared to the large-scale deployment.
- Novel intensification and modularization technology can be helpful in improving productivity of these smaller scale gasifiers thus offsetting some of the cost disadvantages. Furthermore, while some of the intensification strategies may not be feasible in large-scale, modular scale deployment can take advantage of that.

Producing Clean Hydrogen Using a Modular Two-Stage Intensified Membrane-Enhanced Catalytic Gasifier

Producing Clean Hydrogen Using a Modular Two-Stage Intensified Membrane-Enhanced Catalytic Gasifier

Task 1 Project Management and Planning
Task 2 BFB Biomass Gasifier Design, Integration and Performance Testing
Task 3 Design of High-Temperature Resistant Hydrogen Membrane for Ultra-High Purity H₂ Production
Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

		0.5 inch tube [ID=8.5 mm]	0.75 inch tube [ID=16 mm]
N	Cold flow data	Pinewood taken: 0.5 gm	Pinewood taken: 1 gm
	Cold flow data	Initial height: 2.7 cm	Initial height: 2.6 cm
	for various tube	Final height (after fluidization): 6.7 cm	Final height (after fluidization): 7.8 cm
	size	umf=0.65 LPM	umf=1.1 LPM
		dP=0.55 mbar	dP=1.2 mbar

Fixed Bed Reactor Design

Combustion	$\begin{array}{c} C + O_2 \rightarrow CO_2 \\ C + 0.5O_2 \rightarrow CO \end{array}$
Char Gasification	$\begin{array}{c} C + 2H_2 \rightarrow CH_4 \\ C + CO_2 \rightarrow 2CO \\ C + H_2O \rightarrow CO + H_2 \end{array}$
Homogeneous Volatile Reactions	$\begin{array}{c} CH_4 + H_2O \rightarrow CO + 3H_2\\ CO + H_2O \rightarrow CO_2 + H_2\\ CO + 0.5O_2 \rightarrow CO_2\\ CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O\\ H_2 + 0.5O_2 \rightarrow H_2O \end{array}$
Tar Reactions	$\begin{array}{c} C_{x}H_{y}+xH_{2}O \rightarrow xCO+(0.5y+x)H_{2} \\ C_{x}H_{y}+0.5xO_{2} \rightarrow xCO+0.5yH_{2} \\ C_{x}H_{y}+CO_{2} \rightarrow 2xCO+0.5yH_{2} \\ C_{x}H_{y}+H_{2} \rightarrow xCH_{4} \\ C_{x}H_{y} \rightarrow 0.25yCH_{4}+(x-0.25y)C \end{array}$

Gasification Reactions

Schematic of Fixed Bed Biomass Gasifier

Syngas Production from Lignocellulose Pinewood Data at Low and High Pressure in Fixed Bed

	Pressure	Temperature	H ₂	CH ₄	СО	CO ₂	ц /со
	(bar)	(°C)	(Mole %)	(Mole %)	(Mole %)	(Mole %)	H ₂ /CO
PW	28	750	27.23	14.47	22.27	33.87	1.22
	32	800	30.55	19.89	15.31	32.88	2.00
	38	850	31.24	20.44	15.93	31.29	1.96
PW/Fe	30	750	31.04	11.22	22.07	34.80	1.41
	34	800	43.07	26.13	7.67	21.54	5.61
	38	850	36.50	21.04	15.74	24.71	2.32
PW/Ni	30	750	20.57	33.25	14.58	30.74	1.41
	34	800	21.59	29.85	18.39	28.49	1.17
	38	850	28.43	14.40	25.83	29.66	1.10
PW	1.01	750	34.83	22.87	18.26	21.49	1.91
	1.01	800	36.23	12.49	24.81	24.51	1.46
	1.01	850	39.24	8.25	28.72	22.20	1.37
PW/Fe	1.01	750	39.67	12.05	24.98	21.67	1.59
	1.01	800	42.32	7.70	39.67	9.76	1.07
	1.01	850	47.19	7.32	34.21	10.28	1.38
PW/Ni	1.01	750	44.88	7.52	29.41	17.07	1.53
	1.01	800	48.10	8.49	29.10	13.28	1.65
	1.01	850	54.99	4.95	30.30	9.10	1.81

Syngas Production from Lignocellulose Pinewood Data at Low and High Pressure in Fixed Bed

	Pressure	Temperature	H ₂	CH ₄	СО	CO ₂	ц /со
	(bar)	(°C)	(Mole %)	(Mole %)	(Mole %)	(Mole %)	H ₂ /CO
PW	28	750	27.23	14.47	22.27	33.87	1.22
	32	800	30.55	19.89	15.31	32.88	2.00
	38	850	31.24	20.44	15.93	31.29	1.96
PW/Fe	30	750	31.04	11.22	22.07	34.80	1.41
	34	800	43.07	26.13	7.67	21.54	5.61
	38	850	36.50	21.04	15.74	24.71	2.32
PW/Ni	30	750	20.57	33.25	14.58	30.74	1.41
	34	800	21.59	29.85	18.39	28.49	1.17
	38	850	28.43	14.40	25.83	29.66	1.10
PW	1.01	750	34.83	22.87	18.26	21.49	1.91
	1.01	800	36.23	12.49	24.81	24.51	1.46
	1.01	850	39.24	8.25	28.72	22.20	1.37
PW/Fe	1.01	750	39.67	12.05	24.98	21.67	1.59
	1.01	800	42.32	7.70	39.67	9.76	1.07
	1.01	850	47.19	7.32	34.21	10.28	1.38
PW/Ni	1.01	750	44.88	7.52	29.41	17.07	1.53
	1.01	800	48.10	8.49	29.10	13.28	1.65
	1.01	850	54.99	4.95	30.30	9.10	1.81

Syngas Production from Lignocellulose Pinewood Data at Low and High Pressure in Fixed Bed

	Pressure	Temperature	H ₂	CH ₄	СО	CO ₂	ц /со
	(bar)	(°C)	(Mole %)	(Mole %)	(Mole %)	(Mole %)	n ₂ /c0
PW	28	750	27.23	14.47	22.27	33.87	1.22
	32	800	30.55	19.89	15.31	32.88	2.00
	38	850	31.24	20.44	15.93	31.29	1.96
PW/Fe	30	750	31.04	11.22	22.07	34.80	1.41
	34	800	43.07	26.13	7.67	21.54	5.61
	38	850	36.50	21.04	15.74	24.71	2.32
PW/Ni	30	750	20.57	33.25	14.58	30.74	1.41
	34	800	21.59	29.85	18.39	28.49	1.17
	38	850	28.43	14.40	25.83	29.66	1.10
PW	1.01	750	34.83	22.87	18.26	21.49	1.91
	1.01	800	36.23	12.49	24.81	24.51	1.46
	1.01	850	39.24	8.25	28.72	22.20	1.37
PW/Fe	1.01	750	39.67	12.05	24.98	21.67	1.59
	1.01	800	42.32	7.70	39.67	9.76	1.07
	1.01	850	47.19	7.32	34.21	10.28	1.38
PW/Ni	1.01	750	44.88	7.52	29.41	17.07	1.53
	1.01	800	48.10	8.49	29.10	13.28	1.65
	1.01	850	54.99	4.95	30.30	9.10	1.81

Syngas Yield in Catalytic Gasification of Pinewood in Fixed Bed

- The major difference in reaction under high and low pressures:
 - (a) High pressure reaction producing syngas with high amount of methane, i.e., high pressure driven the methanation reaction.
 - (b) Low pressure reactions producing syngas with low amount of methane and carbon dioxide.
- In pressurized reaction, non-catalytic gasification gives 99.244 % carbon conversion and catalytic gasification gives nearly 100 % carbon conversion.
- In low-pressure reaction, non-catalytic gasification gives 86.54 % carbon conversion and catalytic gasification gives nearly 100 % carbon conversion

Schematic of Continuous Biomass Gasifier Syngas Yield in BFB1 Micro-GC **Y1** (Gaseous 60 H2 800°C, Pinewood only (BFB 1) T6 ----**Products**) CH4 MFC CO **GC-MS** 50 **Y1** CO2 **T5** DP2 (Tar analysis) MFC Tar 45 -20°C 43 Condensors 41 **T4** 40 39 39 38 Steam 37 Y10 Micro-GC Generator Yield (%) MFC Y1 (Gaseous 30 Products) MFC BFB **BFB-Bubbling Fluidized Bed** FB-Fixed Bed **Carbon dioxide** - · T3 20 **Y1-Filters** Nitrogen **Y2-Gas Diffuser** DP1 **Y3-Fluidization Zone (Biomass+Catalyst A)** 12 11 11 10 **Y4-Catalyst B** 9 ·T2 10 **Y7** 9 8 **Y5-Glass wool** 6 6 Y6 Y6-Motor •**T1 Y7-Screw Feeder** Y2 Λ **Y8-Biomass** 2.25 3.48 0.76 3.98 5.42 **Y9-Tar Condensor Tubes** ¥10 **Y10-Furnaces** Feeding Rate (g/hr) **DP1, DP2- Differential Pressure T1-T6-Thermocouples**

Membrane Preparation and Characterization

<u>Aim</u> : To develop a membrane to produce high-purity H_2 (99.98%) in conjunction with bubbling fed fluidized reactor

- Matrimid[®] derived hollow fiber membranes are spun using a conventional (dry-jet/wet-quench) method of fiber spinning.
- The polymer hollow fibers are pyrolyzed in an inert environment in a three-zone furnace to form carbon molecular sieve (CMS) hollow fiber membranes.
- In the molecular level, the CMS microstructure has microporous Langmuir voids which allow for high sorption of gases as well as ultramicroporous sites which provide selectivity between similar-sized (e.g., $H_2 0.289$ nm; CO 0.376 nm and CO₂ 0.38 nm) penetrants.

Membrane Preparation and Characterization---Methodology

CO₂ CO CH₄

Sanyal et al. Journal of Membrane Science, 551, 113-122, 2018

Matrimid[®] precursor fiber

Results from the best conditions for each of the 2 precursors

Spin 1

- CO₂ P/L = 126-167 GPU
- CO_2/CH_4 selectivity (α) = 16-18.5

Spin 2

- $CO_2 P/L = 211GPU$
- CO_2/CH_4 selectivity (α) = 7.3

Final temperature = 550 °C Inert (Argon) atmosphere ($O_2 < 1$ ppm)

T _{initial} (°C)	T _{final} (℃)	Ramp Rate (°C/min)
50	250	13
250	T _{final} -15	4
T _{final} -15	T _{final}	0.25
T _{final}	T _{final}	2 hr soak

Standard 550 °C pyrolysis protocol

The precursor were primarily tested with CO_2 and CH_4 as probes to ensure the precursors had some molecular sieving nature

Literature value of Matrimid[®] dense film for CO_2/CH_4 separation ~ 27 (under similar testing conditions)

Matrimid®-derived CMS fiber

<u>Results from resulting CMS hollow fiber</u> <u>membranes pyrolyzed at 550°C (inert)</u>

> $H_2 P/L = 26 GPU$ H_2/CO_2 selectivity (α) = 4

Without any additional treatment or unless processed under higher temperatures, these CMS membranes have very low H_2/CO_2 selectivities

CMS Selective Layer Engineering Using Amine/acyl Chloride Treatment

- Typically, this strategy is used for precursor "defect curing". If any minor defects exist, they can be "cured" by utilizing DETDA/TMC post-treatment
- In this project, we are using this strategy to engineer the selective layer precisely to provide high $H_2 P/L$ as well as high H_2/CO_2 selectivities.

Hypothesis to validate – combining high temperature (800-900 °C) *pyrolysis and DETDA/TMC treatment would lead to highly selective membranes*

Recall high temperature pyrolysis is expected to lead to tightened ultramicropores

Our plan is to reduce the DETDA concentration (~0.05 wt.%) and exposure time (5-10 mins) to avoid excessive tightening

Pyrolysis Temp **800°C** fast (fast refers to high **15** °C/*min*)

	Stage 3 CN	/IS(V150,D,			
	GPU CO2	H2/CO2	H2/CH4		
Module 2	8.8	28.8	11.8	3.272727	2.787489
Module 3	7.73	30.3	10.87	3.919793	2.787489
Module 4	0.84	4.6	1.2	5.47619	3.833333

Pyrolysis Temp **<u>900°C</u>** standard (<u>**4** °C/*min*</u> ramp rate)

	Stage 3 CN	AS(V[ND],I			
	GPU CO2	GPU H2	GPU CH4	H2/CO2	H2/CH4
Module 1	1.4	3.8	0.4	2.714286	9.5
Module 2	0.8	0.7	3.4	0.875	0.205882
Module 3	2.8	0.9	10.5	0.321429	0.085714
Module 4	6.8	4	13.5	0.588235	0.296296

Both cases led to low $H_2 P/L$ and low H_2/CO_2 and H_2/CH_4 selectivities WestVirginiaUniversity.

Task 3 Design of High-Temperature Resistant Hydrogen Permeation Membrane for Ultra-high Purity H₂ Production

Hypothesis to validate – combining high temperature (800-900 °C) *pyrolysis and DETDA/TMC treatment would lead to highly selective membranes, cont.*

West Virginia University. Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

West Virginia University. Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

WestVirginiaUniversity.

Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

Shrinking particle model assumption has been validated

Statistical Summary of coal and biomass feed composition (% w/w)

Feed Source	Mean	Standard Deviation	Variance	SEM
Coal	9.12	2.96	8.76	1.48
Biomass	1.12	1.12	1.26	0.28

db: Dry basis. Source: As reported by (Alauddin et al., 2010) VM: volatile matter; FC: fixed carbon. Source: As reported by (Kasule et al., 2014)

Ash content in biomass is significantly lower than that in coal.

$$k_{overall} = \frac{1}{\frac{1}{k_{dg}} + \frac{1}{Y^2 k_s}}$$

 $Y = r_c/R$; r_c is the radius of the particle along reactor length and R the radius of the particle at the inlet. $k_{dec}k_c$ are the gas film diffusion coefficient, and the

 k_{dg} , k_s are the gas film diffusion coefficient, and the surface reaction constants, respectively.

 P_{eff} is the effective partial pressure of the *i*th-component in the gas participating in the gasification reactions.

A shrinking particle model is assumed for heterogenous gasification modeling.

West Virginia University. Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

Considering the presence of the perforated plate at the gas entrance, the pressure drop is calculated, which is found to agree well with experimental data.

Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

Membrane Separation Modeling and Parameter Estimation

Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

Multi-stage membrane units for H₂ Separation

West Virginia University.

Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

Results and Sensitivity for Breakeven Cost vs. Compression Ratio

- Minimum pressure ratio for 3-stage system to achieve purity target is **16.5** bar
- CR > 30 bar made third stage redundant and decreased cost considerably

West Virginia University.

Task 4 Process Modeling, Optimization, and Techno-Economic Analysis

3.7

Flue gas source	CO ₂ conc. (%)	P (atm)	CO ₂ partial pressure (atm)
Gas turbine	3-4	1	0.03-0.04
Fired boiler of oil refinery and petrochemical plant	~8	1	0.08
Natural gas fired boilers	7-10	1	0.07-0.10
Oil-fired boilers	11-13	1	0.11-0.13
Coal-fired boilers	12-14	1	0.12-0.14
IGCC ^a after combustion	12-14	1	0.12-0.14
Hydrogen production	15-20	22-27	3-5
Streel production (blast furnace)	20-27	1-3	0.206
Aluminum production	1-2	1	0.01-0.02
Cement process	14-33	1	0.14-0.33

CO₂ Separator Modeling and Model Validation

1 0.6 0.8 0.9 0.7 CO2 Capture Rate, % 11 Productivity, kg CO2/h/m^3 10 9 8 7 6 5 4 3 0.9 0.8 0.6 0.7

Optimal results are obtained with changing bed length, rotation speed, fraction of bed, direct and indirect steam flowrate, etc.

^a IGCC, integrated gasfication combined cycle. Figueroa et al., 2008; Chu, 2009).

Inlet mole fraction of CO₂ is assumed to be 15% 27

CO2 Capture Rate, %

1

Test various operational parameters in the two-stage gasifier by using different gasifying agents and catalysts

► Incorporate gasifier with the membrane reactor

- Optimize pyrolysis and other conditions for membrane manufacturing and and optimize the defect curing step for maximizing selectivity and recovery
- Complete and validated non-isothermal gasifier model, ands membrane model, CO₂ capture system models.
- > Complete optimization and techno-economic analysis of the plant-wide system

Acknowledgement

- Gratefully acknowledge funding from DOE-NETL through Grant#DE-FE0032191 for this project
- Support from Drs. Evelyn Lopez and Sarah Michalik from NETL

Thank you for your attention

Questions?

Process Modeling-----CO₂ Separator Modeling and Model Validation

CO₂ in Different Processes and Capture Result by RPB for 15%

WestVirginiaUniversity,

	Doc	Value						
ads.L	Bed Length [m]	23.9412409	24.55167824	24.85108349	32.15661792	40	40	35.9496199
ads.D	Bed diameter [m]	10	10	10	10	10	10	10
ads.w_rpm	bed rotational speed [revolutions/min]	0.005478633	0.005143607	0.004068796	0.003185256	0.00204922	0.001996311	0.00207667
ads.theta	Fraction of bed [-]	0.453319628	0.464745531	0.519057412	0.607292384	0.762785759	0.763577131	0.753768243
des.theta	Fraction of bed [-]	0.546680372	0.535254469	0.480942588	0.392707616	0.237214241	0.236422869	0.246231757
ads.P_in	Inlet flue gas pressure [bar]	1.760509026	1.760509026	1.693486368	1.724899349	1.686161928	1.687734435	1.642636601
ads.P_out	Outlet adsorber pressure [bar]	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325
ads.F_in	Inlet adsorber gas flow [mol/s]	566.5837506	566.5837506	566.5837506	566.5837506	566.5837506	566.5837506	566.5837506
ads.Tg_in	Inlet flue gas temperature [K]	363	363	363	363	363	363	363
ads.Tx	heat exchange fluid temperature, constant [K]	365.7212138	368	368	368	368	368	368
des.P_in	Inlet flue gas pressure [bar]	1.075940703	1.06975813	1.07760409	1.104928447	1.192434454	1.174187106	1.138756112
des.P_out	Outlet adsorber pressure [bar]	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325	1.01325
des.F_in	Inlet adsorber gas flow [mol/s]	25.78230611	17.65192243	20.75773675	17.20535863	16.9812937	14.33384576	12.52131998
des.Tg_in	Inlet flue gas temperature [K]	393	393	393	393	393	393	393
des.Tx	heat exchange fluid temperature, constant [K]	429.4869519	429.8433447	433	429.9436207	432.3018625	430.2352644	429.4414099
ads.CO2_capture	CO2 capture fraction	0.9	0.85	0.8	0.75	0.7	0.65	0.6
energy_requirement	Energy requirement [MJ/kg CO2]	3.588480552	3.499373905	3.38575141	3.307960847	3.151155623	3.121919606	3.094440133
productivity	Productivity [kg CO2/h/m^3]	9.66733661	8.903253309	8.27857612	5.997936807	4.500378451	4.178922848	4.292081257
ads.y_in[N2]	inlet mole fraction	0.8	0.8	0.8	0.8	0.8	0.8	0.8
ads.y_in[CO2]	inlet mole fraction	0.15	0.15	0.15	0.15	0.15	0.15	0.15
ads.y_in[H2O]	inlet mole fraction	0.05	0.05	0.05	0.05	0.05	0.05	0.05
ads.y_out[N2]	outlet mole fraction	0.924855491	0.916905444	0.909090909	0.901408451	0.893854749	0.886426593	0.879120879
ads.y_out[CO2]	outlet mole fraction	0.01734104	0.025787966	0.034090909	0.042253521	0.05027933	0.058171745	0.065934066
ads.y_out[H2O]	outlet mole fraction	0.057803468	0.05730659	0.056818182	0.056338028	0.055865922	0.055401662	0.054945055

Producing Clean Hydrogen Using a Modular Two-Stage Intensified Membrane-Enhanced Catalytic Gasifier