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Period of Performance: 10/16/2023-04/23/2024 

Federal
Cost 

Share

NCSU $979,960 $175,548

MIT $220,000 $55,003 

GTI $100,000 $25,000

Acadian $50,000 $12,500

Total $1,249,960 $313,051

Objective: To develop and demonstrate a redox-based, radically 

engineered modular air separation unit (REM-ASU) for small-

scale biomass gasifiers  

Key Goals:

i. Advanced steam-resistant oxygen sorbents with > 2 wt.% 

oxygen capacity

ii. Comprehensive demonstration of the ASU system in a 20 kg 

O2/day testbed 

iii. Detailed design of the REM-ASU for integration with 5 – 10 

MW modular biomass gasifier

Project Partners
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Cryogenic air 
separation

Chemical looping
 air separation

Status mature developing
Energy consumption 

(MJ/kg O2) 0.79 <0.54

Thermodynamic (second 
law) efficiency (%) ~25% >36%

Oxygen purity (%) 99+ 99+

Cryogenic vs. CLAS 

Source: Krzystowczyk, et al., ACS Sustainable Chem. Eng. 2021,. (2021) 

Chemical looping air separation (CLAS) has the potential to be highly energy efficient
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Radically engineered modular air separation unit (REM-ASU) 

Absorption: ABO3−δ + δ/2O2(g) → ABO3 + Heat

Desorption: ABO3 + heat → ABO3−δ + δ/2O2(g)

Air

O2 Depleted Air

O2

Steam

MeOx

MeOy

x > yAbsorption Desorption

 2-step redox loop at 400-600 oC
 Produce concentrated O2 (up to 99%)
 Steam-resistant oxygen sorbent

Perovskite Oxides (ABO3−δ)

Great sorbent candidates:
 Continuous oxygen exchange
 Flexible thermochemical 

properties 
 Fast kinetics
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Preliminary Results –Oxygen Sorbent Development

These results are generated from a recent NETL support (DE-FE0031521)

 Applied a DFT-based machine learning 
approach to develop alternative sorbents

 13 out 15 structures showed superior 
performance to SrFeO3-δ

 SrxCa1-xFeyCo1-yO3-δ (SCFC) achieved 7-times 
higher oxygen capacity than SrFeO3-δ and 
demonstrated stable performance over 
10,000 cycles

Source: Dou et al., ChemSusChem (2022) 

Source: Wang et al., Energy Environ. Sci. (2022) 
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Preliminary Results –Overall System Performance

These results are generated from a recent NETL support (DE-FE0031521)

 REM-ASU process design in the ASPEN Plus 
 30.8% lower energy consumption than 

cryogenic air separation

Source: Krzystowczyk et al., ACS Sustainable Chem. Eng. (2021) 
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Task 1: Project Management and Planning (NCSU)
Task 2: Societal Considerations and Impact 
Task 3: Update of the Absorber and Process Models (NCSU)

Milestone 3.1: Establish the REM-ASU model compatible with 5 – 10 MW biomass gasifier (completed)
Task 4: Optimization of Entropy Stabilized Perovskite Sorbents (NCSU, and MIT)

Milestone 4.1: Obtain 4  or more entropy-stabilized perovskite oxygen sorbents with > 1 wt.% oxygen 
capacity and <5% oxygen capacity decrease over 25 cycles (completed)
Milestone 4.2: Report dopant effects on kinetics (in progress)
Milestone 4.3: Developed an improved DFT model considering the phase stability (in progress)

Task 5: Validation of Advanced Oxygen Sorbents (NCSU)
Milestone 5.1:  Obtain four or more perovskite OSs with >2 wt.% oxygen storage capacity (in progress)

Tasks and Milestones (Year I)
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Milestone 5.2: Identify two or more advanced steam-resistant OSs with >2 wt.% oxygen capacity, less 
than 5% deactivation over 250 hours 
Milestone 5.3: Determine the operating conditions in fixed bed adsorption/desorption cycles 

Task 6: Sub-Pilot System Modification (NCSU)
        Milestone 6.1: Operation of the modified sub-pilot system with inert particles for 24 hours
Task 7: Scale-Up of Oxygen Sorbent Synthesis  (MIT)

Milestone 7.1 Synthesize two 50 kg batches of advanced oxygen sorbent
Task 8: Sub-Pilot Scale Testing of REM-ASU (NCSU, Acadian)
        Milestone 8.1: Production of >95% pure O2  for over 500 hours with less than 10% deactivation
Task 9: Performance and Cost Evaluations of the REM-ASU Technology (GTI, NCSU, Acadian)
        Milestone 9.1: Establish a techno-economic analysis model for REM-ASU (in progress)
        Milestone 9.2: Design a 30 TPD REM-ASU unit

Tasks and Milestones (Year II)
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Entropy Stabilized 
Perovskite Sorbents 

Advancement of Sorbents 
via an Improved DFT Model

Reactor Modelling and 
Techno-economic Analyses 
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 4-step cyclic configuration was simulated 

based on SCFC sorbent

PR: pressurization step
AB: absorption step
DP: co-current depressurization step
DE: counter-current desorption step

Item Case1 Case2 Case3 Case4
Absorption time (s) 30-100
Desorption time (s) 30-100
Length/Diameter 5 2.5 1 0.5
Steam flow rate 

(mol/min)
778~

3112

1838~

7352

3530~

14118

5577~

22306
Absorption pressure 

(bar)
1.6-2

Air flow rate (SLM)
29630~

118518

55946~

223784

88234~

352942

139412~

557646
O2 purity (%) >95
Optimization 

Objective
Max O2 productivity and min power 

consumption

Optimization Parameters:

Milestone 3.1: Establish the REM-ASU model compatible with 5-10 MW biomass gasifier (completed)

Source: Cai et al., International Journal of Greenhouse Gas Control (2024) 
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 Decreasing L/D improves oxygen 

productivity

 At a fixed L/D, higher productivity 

consumes more energy due to 

steam consumption

Source: Cai et al., International Journal of Greenhouse Gas Control (2024) 
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 L/D ratio was set to 1

 Shorter absorption time and longer 

desorption time lead to better productivity

 Recovery increases with absorption time and 

decreases with desorption time

 Purity increases with desorption, and 

absorption time

Source: Cai et al., International Journal of Greenhouse Gas Control (2024) 
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 The cost of oxygen was projected 

to be as low as $65/ton O2

 L/D=1 gives the most optimal 

results

 Reactor size decrease with  

increased sorbent capacity

 Increased steam demands increase 

the size of heat exchanger

 For minimizing capital costs, it is 

important to optimize sorbent 

capacity and kinetics

Source: Cai et al., International Journal of Greenhouse Gas Control (2024) 
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Entropy Stabilized 
Perovskite Sorbents 

Advancement of Sorbents 
via an Improved DFT Model

Reactor Modelling and 
Techno-economic Analyses 
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 Perovskites with 5 cations have high 

configurational entropy

 Several compositions were predicted 

using a ML approach

 Desired phases were obtained using 

a sol-gel method

Milestone 4.1: Obtain 4 or more entropy-stabilized perovskite oxygen sorbents with > 1 wt.% oxygen capacity and 
<5% oxygen capacity decrease over 25 cycles (completed)
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oxygen capacities under the conditions of 
700oC- 75% O2 and 450 oC-0.5%O2

oxygen vacancies under the conditions of 
700oC- 20% O2 and 450 oC-Ar

SKFCN achieved
>2wt% O2 capacity
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 SKFCN maintained its oxygen capacity of 1.13 wt% under 600 oC /1%O2 and 400 oC /20%O2 for 50 cyles
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In-situ XRD results with Ar TPD and cooling results

SF:
 Once it reaches a vacancy concentration 

> 0.5, the material begins to decompose.

SKFCN:
 The material stays stable a vacancy 

concentration of > 0.5
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Entropy Stabilized 
Perovskite Sorbents 

Advancement of Sorbents 
via an Improved DFT Model

Reactor Modelling and 
Techno-economic Analyses 
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Sufficient oxygen capacity was aimed at both T=400oC and 600oC.                                           

Absorption: ABO3−δ+δ/2O2(g) → ABO3+∆H, pO2=0.01 
bar

Desorption: ABO3+∆H→ ABO3−δ+δ/2O2(g)  pO2=0.02 
bar

(AxA’1-xByB’1-yO3-δ)
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Milestone 4.3: Developed an improved DFT model considering the phase stability (in progress)

 We predicted thermodynamic stability of 254 structures 
by calculating energy above convex hull (Ehull) 

 All the synthesized samples with pure phases was found 
to be below an Ehull limit of 75 meV/atom

 85 samples below the Ehull limit is currently considered 
for  synthesis and testing

 Limitation: Ehull calculations are done using the ground 
state formation energies, which does not reflect the 
temperature effects

The calculation method for Ehull was taken from the study below:
 Source: Morgan et al., Computational Materials Science (2018) 
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 Candidates with phase purity are tested for 
their oxygen capacity

 8 of the tested sorbent candidates showed 
capacities of ≥1 wt% under temperature and 
pressures swing conditions

 Particularly, CSFN achieved as high as 2.15 wt%
 These results establish the effectiveness of the 

improved DFT model

Milestone 5.1:  Obtain four or more perovskite OSs with >2 wt.% oxygen storage capacity (in progress)

oxygen capacities under the conditions of 
600oC- 20% O2 and 400 oC-Ar
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Isothermal oxygen capacities under a 
pressure swing between 20% O2 and 1% O2 

 CSFN , which was predicted through DFT model,  
exhibited superior oxygen capacity to SCFC8291

    at lower temperatures (400oC)
 CSFN maintained an isothermal oxygen 

capacity of 2 wt% over 20 cycles
Limitation: At such low temperatures, kinetics is 
limited which require longer desorption time
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Reactor Modelling and Techno-economic Analyses:

 A reactor modeling was conducted to optimize L/D ratio and other performance parameters

 A techno-economic analysis to achivee the cost of oxygen production as low as $65/ton O2

Entropy Stabilized Perovskite Sorbents :

 Entropy stabilized perovskite sorbents were synthesized, tested and characterized

 The stability of SKFCN was demonstrated over 50 cycles

Advancement of Sorbents via an Improved DFT Model:

 An improved DFT model that considers phase purity was developed 

 The oxygen capacities of the materials with phase purity were tested

 CSFN was found as a promising sorbent for low temperature operations of REM-ASU
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 Phase purity prediction of DFT model will be further supported via 
additional calculations that can reflect the structures at high 
temperatures

 Additional characterization and optimization will be conducted for 
CSFN to optimize operating temperature and kinetics for sake of the 
efficiency

 Alternative candidates will be searched by continuing the experimental 
evaluation based on the results of DFT model

 Long-term performance of the promising sorbents will be evaluated for 
pilot testing
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Source: Bartel et al., Computational Materials Design(2022) 
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