An Advanced Modular Redox Air Separation System for Cost-Effective, Net-Zero Hydrogen Production

<u>Hilal Bektas</u>, Kunran Yang, Luke Neal, Fanxing Li (PI) NC State University

Project Partners: Massachusetts Institute of Technology and GTI Energy DOE/NETL Project Manager: Sarah (Michalik) Pfeiffer 04/23/2024

Presentation Outline

- Project Overview and Background
- Technical Approach
- Key Results
- Summary and Future Work

Period of Performance: 10/16/2023-04/23/2024

Project Partners

	Federal	Cost Share	
NCSU	\$979,960	\$175,548	
MIT	\$220,000	\$55 <i>,</i> 003	
GTI	\$100,000	\$25,000	
Acadian	\$50,000	\$12,500	
Total	\$1,249,960	\$313,051	

Objective: To develop and demonstrate a redox-based, radically engineered modular air separation unit (REM-ASU) for small-scale biomass gasifiers

Key Goals:

- Advanced steam-resistant oxygen sorbents with > 2 wt.%
 oxygen capacity
- ii. Comprehensive demonstration of the ASU system in a 20 kg

O₂/day testbed

iii. Detailed design of the REM-ASU for integration with 5 - 10 MW modular biomass gasifier

Cryogenic vs. CLAS

	Cryogenic air separation	Chemical looping air separation	
Status	mature	developing	
Energy consumption (MJ/kg O ₂)	0.79	<0.54	
Thermodynamic (second law) efficiency (%)	~25%	>36%	
Oxygen purity (%)	99+	99+	

Chemical looping air separation (CLAS) has the potential to be highly energy efficient

Radically engineered modular air separation unit (REM-ASU)

Perovskite Oxides (ABO_{3- δ})

Great sorbent candidates:

- Continuous oxygen exchange
- Flexible thermochemical properties
- Fast kinetics

2-step redox loop at 400-600 °C

- Produce concentrated O₂ (up to 99%)
- Steam-resistant oxygen sorbent

Absorption: $ABO_{3-\delta} + \delta/2O_2(g) \rightarrow ABO_3 + Heat$ **Desorption:** $ABO_3 + heat \rightarrow ABO_{3-\delta} + \delta/2O_2(g)$

Preliminary Results – Oxygen Sorbent Development

 Sr_xCa_{1-x}Fe_yCo_{1-y}O_{3-δ} (SCFC) achieved 7-times higher oxygen capacity than SrFeO_{3-δ} and demonstrated stable performance over 10,000 cycles

Source: Dou et al., ChemSusChem (2022)

Source: Wang et al., Energy Environ. Sci. (2022)

- Applied a DFT-based machine learning approach to develop alternative sorbents
- 13 out 15 structures showed superior performance to SrFeO_{3-δ}

These results are generated from a recent NETL support (DE-FE0031521)

Preliminary Results – Overall System Performance

 30.8% lower energy consumption than cryogenic air separation

REM-ASU process design in the ASPEN Plus

Source: Krzystowczyk et al., ACS Sustainable Chem. Eng. (2021)

Tasks and Milestones (Year I)

- Task 1: Project Management and Planning (NCSU)
- Task 2: Societal Considerations and Impact
- Task 3: Update of the Absorber and Process Models (NCSU)
 - Milestone 3.1: Establish the REM-ASU model compatible with 5 10 MW biomass gasifier (completed)
- Task 4: Optimization of Entropy Stabilized Perovskite Sorbents (NCSU, and MIT)

Milestone 4.1: Obtain 4 or more entropy-stabilized perovskite oxygen sorbents with > 1 wt.% oxygen capacity and <5% oxygen capacity decrease over 25 cycles (completed)
Milestone 4.2: Report dopant effects on kinetics (in progress)
Milestone 4.3: Developed an improved DFT model considering the phase stability (in progress)
Task 5: Validation of Advanced Oxygen Sorbents (NCSU)

Milestone 5.1: Obtain four or more perovskite OSs with >2 wt.% oxygen storage capacity (in progress)

Tasks and Milestones (Year II)

Milestone 5.2: Identify two or more advanced steam-resistant OSs with >2 wt.% oxygen capacity, less than 5% deactivation over 250 hours
Milestone 5.3: Determine the operating conditions in fixed bed adsorption/desorption cycles
Task 6: Sub-Pilot System Modification (NCSU)
Milestone 6.1: Operation of the modified sub-pilot system with inert particles for 24 hours
Task 7: Scale-Up of Oxygen Sorbent Synthesis (MIT)
Milestone 7.1 Synthesize two 50 kg batches of advanced oxygen sorbent
Task 8: Sub-Pilot Scale Testing of REM-ASU (NCSU, Acadian)
Milestone 8.1: Production of >95% pure O₂ for over 500 hours with less than 10% deactivation
Task 9: Performance and Cost Evaluations of the REM-ASU Technology (GTI, NCSU, Acadian)

Milestone 9.1: Establish a techno-economic analysis model for REM-ASU (in progress) Milestone 9.2: Design a 30 TPD REM-ASU unit

(aspentech

KEY RESULTS

Reactor Modelling and Techno-economic Analyses

Entropy Stabilized Perovskite Sorbents

Advancement of Sorbents via an Improved DFT Model

Milestone 3.1: Establish the REM-ASU model compatible with 5-10 MW biomass gasifier (completed)

4-step cyclic configuration was simulated

based on SCFC sorbent

PR: pressurization stepAB: absorption stepDP: co-current depressurization stepDE: counter-current desorption step

Optimization Parameters:

ltem	Case1	Case2	Case3	Case4	
Absorption time (s)	30-100				
Desorption time (s)	30-100				
Length/Diameter	5	2.5	1	0.5	
Steam flow rate	778~	1838~	3530~	5577~	
(mol/min)	3112	7352	14118	22306	
Absorption pressure (bar)	1.6-2				
Air flow rate (SLM)	29630~	55946~	88234~	139412~	
	118518	223784	352942	557646	
O ₂ purity (%)	>95				
Optimization	Max O ₂ productivity and min power				
Objective	consumption				

Source: Cai et al., International Journal of Greenhouse Gas Control (2024)

- Decreasing L/D improves oxygen productivity
- At a fixed L/D, higher productivity consumes more energy due to steam consumption

Source: Cai et al., International Journal of Greenhouse Gas Control (2024)

- L/D ratio was set to 1
- Shorter absorption time and longer desorption time lead to better productivity
- Recovery increases with absorption time and decreases with desorption time
- Purity increases with desorption, and absorption time

- The cost of oxygen was projected to be as low as \$65/ton O₂
- L/D=1 gives the most optimal results
- Reactor size decrease with increased sorbent capacity
- Increased steam demands increase the size of heat exchanger
- For minimizing capital costs, it is important to optimize sorbent capacity and kinetics

KEY RESULTS

Reactor Modelling and Techno-economic Analyses

Energy consumption (kW·h/ton O_2)

100

0

600

500

Entropy Stabilized Perovskite Sorbents

Advancement of Sorbents via an Improved DFT Model

Entropy-Stabilized Perovskite Sorbents

Milestone 4.1: Obtain 4 or more entropy-stabilized perovskite oxygen sorbents with > 1 wt.% oxygen capacity and <5% oxygen capacity decrease over 25 cycles (completed)

- Perovskites with 5 cations have high configurational entropy
- Several compositions were predicted using a ML approach
- Desired phases were obtained using a sol-gel method

Entropy Stabilized Perovskite Sorbents

oxygen capacities under the conditions of 700°C- 75% O_2 and 450 °C-0.5% O_2

oxygen vacancies under the conditions of 700°C- 20% $\rm O_2$ and 450 °C-Ar

Entropy Stabilized Perovskite Sorbents

SKFCN maintained its oxygen capacity of 1.13 wt% under 600 °C /1%O₂ and 400 °C /20%O₂ for 50 cyles

Entropy Stabilized Perovskite Sorbents

In-situ XRD results with Ar TPD and cooling results

SF:

Once it reaches a vacancy concentration
 > 0.5, the material begins to decompose.

 The material stays stable a vacancy concentration of > 0.5

KEY RESULTS

Reactor Modelling and Techno-economic Analyses

Entropy Stabilized Perovskite Sorbents

Advancement of Sorbents via an Improved DFT Model

Sufficient oxygen capacity was aimed at both T=400°C and 600°C.

```
Absorption: ABO_{3-\delta}+\delta/2O_2(g) \rightarrow ABO_3+\Delta H, p_{O2=0.01} bar
Desorption: ABO_3+\Delta H \rightarrow ABO_{3-\delta}+\delta/2O_2(g) p_{O2=0.02} bar
```

$$\Delta G_{\rm exp} = -\frac{1}{2}RT \,\ln\frac{P_{\rm O_2}}{P^0}$$

Milestone 4.3: Developed an improved DFT model considering the phase stability (in progress)

The calculation method for Ehull was taken from the study below: Source: Morgan et al., Computational Materials Science (2018)

- We predicted thermodynamic stability of 254 structures by calculating energy above convex hull (Ehull)
- All the synthesized samples with pure phases was found to be below an Ehull limit of **75 meV/atom**
- **85** samples below the Ehull limit is currently considered for synthesis and testing
- Limitation: Ehull calculations are done using the ground state formation energies, which does not reflect the temperature effects

Milestone 5.1: Obtain four or more perovskite OSs with >2 wt.% oxygen storage capacity (in progress)

oxygen capacities under the conditions of 600°C- 20% O₂ and 400 °C-Ar

- Candidates with phase purity are tested for their oxygen capacity
- 8 of the tested sorbent candidates showed capacities of ≥1 wt% under temperature and pressures swing conditions
- Particularly, CSFN achieved as high as 2.15 wt%
- These results establish the effectiveness of the improved DFT model

Isothermal oxygen capacities under a pressure swing between 20% O_2 and 1% O_2

- CSFN , which was predicted through DFT model, exhibited superior oxygen capacity to SCFC8291 at lower temperatures (400°C)
- CSFN maintained an isothermal oxygen capacity of 2 wt% over 20 cycles

Limitation: At such low temperatures, kinetics is limited which require longer desorption time

Summary

Reactor Modelling and Techno-economic Analyses:

- A reactor modeling was conducted to optimize L/D ratio and other performance parameters
- A techno-economic analysis to achive the cost of oxygen production as low as \$65/ton O₂

Entropy Stabilized Perovskite Sorbents :

- Entropy stabilized perovskite sorbents were synthesized, tested and characterized
- The stability of SKFCN was demonstrated over 50 cycles

Advancement of Sorbents via an Improved DFT Model:

- An improved DFT model that considers phase purity was developed
- The oxygen capacities of the materials with phase purity were tested
- CSFN was found as a promising sorbent for low temperature operations of REM-ASU

Future Work

- Phase purity prediction of DFT model will be further supported via additional calculations that can reflect the structures at high temperatures
- Additional characterization and optimization will be conducted for CSFN to optimize operating temperature and kinetics for sake of the efficiency
- Alternative candidates will be searched by continuing the experimental evaluation based on the results of DFT model
- Long-term performance of the promising sorbents will be evaluated for pilot testing

Acknowledgments

NCSU-Li Research Group: Dr. Runxia Cai, Dr. Emily Krzystowczyk, Dr. Xijun Wang, Anna Lawrence, Alessandro Dal Pra, Sarah Watson

Previous Project Manager:

Evelyn Lopez

Partners:

GTI ENERGY solutions that transform

Energy Above Convex Hull

Source: Bartel et al., Computational Materials Design(2022)