

Development of Syngas Oxy-Combustion Turbine for Use in Advanced sCO₂ Power Cycles

FECM – Spring Project Review Meeting

DE-FE0031929

April 23-25, 2024

Development of Syngas Oxy-Combustion Turbine for Use in Advanced sCO2 Power Cycles

- Goal: Develop a detailed design for a sCO₂ direct fired oxy-fuel turbine for utility scale (300 MWe) utilizing a coal syngas fuel, with the ability to be co-fired with natural gas.
- Operation in an Allam-Fetdvedt cycle targets near zero emissions, while targeting 43% LHV system efficiency.
- The density and heat transfer properties of sCO_2 can take advantage of compact turbomachinery and high performing thermal management.

Turbine Conditions

log P-h Diagram for Carbon Dioxide

- How does this compare to steam and gas turbines?
 - Steam (AUSC): 330 bar, 670°C (Source: GE Steam Power)
 - Gas Turbine: 23 bar, 1430°C (Source: GE H-class)

Project Components

Turbine Design

1150C

Component Testing

Project Team

- SwRI SwRI: PI, Heat transfer testing, materials testing, turbine design.

GE: Aerodynamic flowpath definition, design support.

Purdue: Turbine first stage optimization, blade cascade testing.

- UCF: Pin fin, impingement heat transfer testing.
- 8 RIVERS 8 Rivers: Thermodynamic cycle model.

Air Liquide: Oxy-combustor development.

Materials Testing

6

Autoclave Material Testing

- Autoclave tests are for material and coatings exposure and oxidation characteristics observation at turbine inlet conditions.
- An induction heater with susceptor is used with TCs inserted to measure temperature throughout stack of material samples.

Autoclave Commissioning

Autoclave Testing

While commissioning and have been completing, for long duration testing (1,000 – 5,000 hrs.)

testing over multiple days ongoing efforts underway

Autoclave Test Setup Modifications

- Monolithic 310S specimen holder and susceptor.
- Improved reliability compared to graphite susceptor, decreased resistivity.

MECHANICAL ENGINEERING

10

TBC Cyclic Testing

- 500 cycles
 - 50 min at (1050°C or 1150°C), ambient P
 - 10 min. forced air cooling.
- Two different coating methods on nickel alloy (Haynes 230 shown):
 - Thermal spray MCrAIY bond coat, thermal spray yttrium stabilized zirconia (YSZ) top coat.
 - PEMS MCrAIY bond coat, thermal sprayed (YSZ) top coat

TBC cyclic testing

- Degradation seen on almost all samples for 1150°C cycling.
- PEMS bond coat witnessed significantly less carbon and oxygen attack than thermal sprayed bond coat.

Component Testing

Midsection cooling

- A plethora of midsection ribbed cooling is available up to 50k RE number based on air-breathing engine.
- What happens with sCO₂ at internal cooling RE numbers 100k 400k?

Test insert assembly

 Assembly and disassembly between interchangeable inserts can be completed in 5 hrs.

Test Setup and Conditions

- Typical conditions:
 - Hot Flow: 200 bar, 410°C
 - Cooling Flow: 190 bar, 175°C

MECHANICAL ENGINEERING

16

Comparing plain and ribbed wall tests – total thermal resistance

Comparing plain and ribbed wall tests – evaluated Nusselt number enhancement ratio

The parameter Nu/Nu0 compares the calculated test Nusselt number to a smooth wall Nusselt number calculated from the Gnielinski correlation for a fully developed internal passage with the same fluid conditions.

Pressure drop across serpentine passages

Takeaways from midsection internal cooling test

- Nusselt number enhancement ratios near 3 can be expected based on the test data generated at pertinent Reynolds numbers for sCO_2 .
- Friction factor ratios of up to 10 can be expected for a chevron ribbed passage with characteristics aligned with those used for testing.
- The case can be made that less penalty should be ascribed to the pressure losses for internal cooling geometry relative to a gas turbine.

MECHANICAL ENGINEERING

Background on Ist Stage Blade Optimization

- Purdue University has led the optimization of the 1st stage blade from GE mean line design, optimizing for efficiency and heat load.
- Best Paper Award at 2024 sCO₂ Symposium: Tuite, et. al., "Blade and Rim Seal Design of a First Stage High Pressure Turbine for a 300 MWe Supercritical CO2 Power Cycle".

SIB cascade testing setup

The Purdue Big Rig for Aerothermal Stationary Turbine Analysis (BRASTA) is utilized with modifications for a SIB cascade test.

SIB cascade testing instrumentation

Optimization methods are being used based on CFD analysis to optimize pressure tap location to reconstruct blade loading.

Test Rig Build

- Pressure tap locations installed in blade, with blade scans completed for comparison to nominal geometry.
- Sonic pinwheel has been tested for its actuation to sweep Reynolds numbers.

Turbine Design

Turbine Design

Standard Operating Conditions

Target Design Criteria

- Hot section component lifetime (combustor, transition duct, SIN, SIB): 30k hrs
- Rotor lifetime: **I 50k hrs**
- Pressure containing components designed to ASME BPVC,
 Section VIII.
- Rotordynamics completed according to API standards.
- Mitigate capital cost through the following strategies:
 - Minimize wetted area of HP sections to minimize required section thickness and sealing force.
 - Use cooling flow routing to jacket large diameter
 components to use chrome steels below their creep regime.

Case Design

- Inner Case (315bar): Barrel case
- Outer Case (50bar≈settleout): Horizontally split
- 22X 5"x5'(nut to nut) K14072 (ICr-1/2Mo) bolts
- I'-2' thick case of J42045 (5Cr-1/2Mo)
- Twin 37" exhaust pipes (bottom)
- Twin 9.5" Cooling inlets (top)
- ~37" diffuser axial length
- 2.5' tall flanges

MECHANICAL ENGINEERING

swri.org

30

Design of the outer case leverages a group of design tools

Material	Sallow	Unit	Temp (°F)	Source
J22091	30.8E+3	psi	850	Input from BPVC Sec2.PtD.C.Table 5A
I740	40.0E+3	psi	800	Input from BPVC Code Case 2702-2
ss410	17.2E+3	psi	850	Input from BPVC Sec2.PtD.C.Table 3

INNER CASE: Axial Load		23E+6	lbf
COMBUSTOR CASE: Axial Load		25.4E+6	lbf
OUTER CASE: Flange Separation Load		6.15E+6	lbf
INNER CASE: Cylindrical Wall Thickness		5.03	in
COMBUSTOR CASE: Cylindrical Wall Thickness -		5.73	in
COMBUSTOR CASE: Cylindrical Wall Thickness -		7.60	in
OUTER CASE: Cylindrical Wall Thickness		1.27	in
	Flange Width	11.8	in
OUTER CASE: Flange Width, Height			

COMBUSTOR CASE - INNER CASE: Rail Fit

COMBUSTOR CASE - OUTER CASE: Rail Fit

10.05

4.33

2.50

7.92

1.11

0.640

1.943

Flange Height

Shear Ring Width

Depth of Engagement

Edge Margin

Shear Ring Width

Depth of Engagement

Edge Margin

in

in

in

in

Matl	S_bolt_allow (psi)	Total Bolt Count											Nut Diam										
K14072.a	25100	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	in
	3	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	5.433
	3.25	s	s	s	s	s	s	s	s	s	s	s	s	s	s	ps	5.857						
	3.5	s	s	s	s	s	s	s	s	s	s	s	s	ps	6.281								
	3.75	s	s	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	6.705
ete	4	s	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	7.129
Ĕ	4.25	s	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	7.553
Dia	4.5	s	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	р	7.977
<u><u></u></u>	4.75	s	s	s	s	s	s	ps	ps	ps	ps	22	ps	ps	ps	ps	ps	ps	р	р	р	р	8.401
Bol	5	s	s	s	s	s	s	ps	ps	ps	ps	ps	ps	ps	ps	ps	ps	р	р	р	р	р	8.825
	5.25	s	s	s	s	s	ps	ps	ps	ps	р	р	р	р	р	р	9.249						
	5.5	s	s	s	s	s	ps	ps	ps	р	р	р	р	р	р	р	9.673						
	5.75	s	s	s	s	ps	ps	ps	р	р	р	р	р	р	р	10.097							
	6	s	s	s	s	ps	ps	р	р	р	р	р	р	р	р	10.521							

FEA used to verify design

- FEA at nominal loads used to verify sealing pressure is maintained for split case.
- Limit load analysis converged according to **BPVC** Section VIII, Div. 2.

70.00 (in) 52.50

32

Design of the combustor housing

- ASME Section VIII, Div. 2, Part 4. used for initial thickness requirements:
 - Cylindrical Sections: $t = \frac{D}{2} exp\left(\left[\frac{P}{SF}\right] 1\right)$

- Conical Section:
$$t = \frac{D}{2\cos(\alpha)} exp\left(\left[\frac{P}{SE}\right] - 1\right)$$

Minimum Required Thickness on Combustor Plenum*										
Rank	Material	t ₁	t ₂	t ₃	t _n	1.5*t ₃	1.5*t _n			
5	N06230	2.60	4.50	11.63	0.89	17.45	1.34			
4	N06625	2.56	4.43	11.45	0.98	17.18	1.47			
3	J22091	2.50	4.33	11.20	-	16.80	-			
2	J42045	2.36	4.09	10.56	-	15.84	-			
1	N07718	1.34	2.32	5.99	0.51	8.99	0.77			

Design of the combustor housing

- Limit load and local failure analyses completed and converged according to Section VIII, Div. 2.
- Drawings currently being finalized for manufacturing process to obtain cost estimate, consisting of casting and welding before final machining.

SIB Internal Cooling Design

- Leading edge impingement
- Ribbed serpentine channels
- Pin-fin array
- Trailing edge ejection
- Thermal Barrier Coating

MECHANICAL ENGINEERING

35

SIB thermal and hydraulic network

- Mass flow calculated from pressure differential and area at each flow ejection hole
 - Hole discharge coefficients from literature (Cd = 0.75)
 - Ribbed channels f/f0 = 10.
 - Pin fin array friction factor of 0.2 per row.
- Thermal resistance network used to estimate blade surface Temperature.
 - LE Impingement HTC determined from Chupp correlation.
 - Serpentine channel HTC from modified Gnielinski correlation with BP2 test data enhancement factor.
 - TE pin-fin array HTC from Metzger correlation
 - Thermal Barrier Coating ultimately assumed to be 0.018" thick with k = 1.25 W/m-K.

Zone
T - gas path (C)
T - internal coolin
R - gas path (K/W)
R - tbc (K/W)
R - blade wall (K/
R - internal coolin
R - sum (K/W)
q (W)
T - blade outer su

	LE	Middle	TE
	1114	1089	1064
ng (C)	526.22	445	430
)	0.1969	0.0615	0.0438
	3.841	0.768	0.960
W)	0.5780	0.1156	0.1445
ng (K/W)	0.70	0.22	0.493
	5.314	1.165	1.642
	110.6	552.8	385.9
rface (C)	667.4	630.4	676.5

SIB FEA – Imported Profiles

Imported pressure loading.

Imported convection source temperature for external heat load.

Thermal FEA Setup

- Each internal passage is given a unique cooling CO_2 temperature and heat transfer coefficient.
- An approximate 100°C temperature rise is predicted from feed passage to LE and TE cavities.

SIB Structural Result Criteria

- Curve fits are produced for Haynes 282 UTS and 30k hour creep strength as a function of temperature.
- Result for initial evaluation:

 $\frac{\sigma_{VM}}{\min(UTS(T),\sigma_{cr}(T))}$

SIB FEA Result

 σ_{VM} $\min(UTS(T), \sigma_{cr}(T))$

Pressure loading, centrifugal loading.

Pressure loading, centrifugal loading, thermal expansion effects.

Blade Root Design

- Parallel T-root chosen for monolithic rotor based on literature study.
- Sidestep on base of T-root allows for blades to load off of each other.

tudy. ther.

Blade Root Structural Evaluation

- Boundary Conditions
 - Blade Loading From GE
 - Run with Solid Blade H282
 - I/8" Cooling Port

		Ro	tor Thrust	Tangent	Tangential Force		
	Count	Total	Per Blade	Total	Per Blade		
	#	lbf	lbf	lbf	lbf		
Blade 1	142	82,351	579.9	73,259	515.9		
Blade 2	142	87,750	618.0	74,212	522.6		
Blade 3	142	81,806	576.1	75,217	529.7		
Blade 4	126	70,228	557.4	74,498	591.3		
Blade 5	126	55,424	439.9	72,064	571.9		
Blade 6	126	37,759	299.7	69,903	554.8		
total		415,319					

Rotordynamics Model

from vendors.

Coupling and bearing specifications received

Combustor Flow Diagran

Fuel (2.45CO:H2)

MECHANICAL ENGINEERING

45

Combustor thermal management

- Cooling flow jackets the combustor housing nozzle to extend lifetime of nozzle welded to combustor housing.
- Liner thermal analysis underway to modify geometry and determine TBC requirements for 30,000 hr. target lifetime.

MECHANICAL ENGINEERING

46

Liner Thermal Analysis

Tg = Primary flow gas temp (K) Tw1 = liner wall inside temp (K) Tw2 = liner wall outside temp (K) T3 = recycle flow gas temp (K) A1&A2 = Inside/Outside Liner Area (m2)

- R1 = radiation heat flux from flame to TBC (W/m2)
- C1= convective heat flux from flame to TBC (W/m2)
- R2= radiation heat flux from liner wall to recycle flow (W/m2)
- C2 = convective heat flux from liner wall to recycle flow (W/m2)
- $K_{1i}/K_{1i} = conduction heat flux through TBC (W/m2)$

MECHANICAL ENGINEERING

47

Combustor Components

- Recycle flow temperature and pressure (696 °C, 315 bar) mandates the use of nickel alloy (H282) for Grayloc clamp connectors and blind. ANSI flanges aren't an option.
- A remaining challenge to be met is the orientation of nozzles to simplify the required piping and manifolds.

MECHANICAL ENGINEERING

48

Publications

- Logan Tuite, Purdue University, presented at the 2024 sCO₂ Symposium in San Antonio: Paper 102 Blade and Rim Seal Design of a First Stage High Pressure Turbine for a 300 MWe Supercritical CO2 Power Cycle.
- Michael Marshall, Southwest Research Institute, presented at the 2024 sCO₂ Symposium in San Antonio: Paper 67 Heat Transfer Experiments of Ribbed, Serpentine Cooling Passages with Supercritical CO₂.
- Logan Tuite, Purdue University, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-101722, Optimization of an HPT Blade and Sector-Based Annular Rig Design for Supercritical CO2 Power Cycle Representative Testing.
- Ryan Wardell, University of Central Florida, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-103263, An Experimental Investigation of Heat Transfer for Supercritical Carbon Dioxide Cooling in a Staggered Pin Fin Array.
- John Richardson, University of Central Florida, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-102544, Experimental & Computational Heat Transfer Study of sCO₂ Single let Impingement.
- Ieff Moore, Southwest Research Institute, presented at the 2023 ASME Turbo Expo in Boston, Massachusetts: GT2023-103328, Development of a 300 MWe Utility Scale Oxy-Fuel sCO₂ Turbine.

###