

Effect of Impurities on Supercritical Carbon Dioxide Compatibility (FWP-FEAA144)

B. A. Pint¹, Y.-F. Su¹, M. J. Lance², R. Pillai¹, J. R. Keiser

¹Corrosion Science & Technology Group ²Nuclear Energy Materials Microanalysis Group Materials Science & Technology Division Oak Ridge National Laboratory, Oak Ridge, TN

April 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Acknowledgments

- Funding: U.S. Department of Energy, Office of Fossil Energy and Carbon Management, Advanced Energy Materials Program
 - FEI Talos F200X STEM provided by the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle R&D Program & the Nuclear Science User Facilities
- M. Howell (retired), B. Johnston, G. Garner— oxidation experiments
- T. Lowe SEM, image analysis
- V. Cox (departed), D. Newberry metallography
- Special thanks for alloys:
 - Tenaris
 - EPRI
 - Sam Sham, INL (US heat, alloy 709)

Supercritical CO₂ Allam cycle has been demonstrated!

NetPower 25MWe test facility (Texas)

Exelon, Toshiba, CB&I, 8Rivers Capital: \$140m

The prototype NET Power plant near Houston, Texas, is testing an emission-free technology designed to compete with conventional fossil power.

CHICAGO BRIDGE & IRON

November 2021: plant connected to grid (announced plans for 280MW)

Material challenges:

Combustor: 900°C (initially 1100°C) Turbine exit: 750°C/300 bar Combustion impurities: O₂, H₂O, SO₂?

Burning natural gas in sCO₂ creates impurities...what is effect?

Thermodynamics: Oxygen levels similar in steam/CO₂ Concern about high C activity at m-o interface: not "inert"

CAK RIDGE National Laboratory General conclusion: internal carburization concern for Fe-based alloys

sCO₂ compatibility: broad range of conditions considered

400°-650°C: concern about steel carburization

- Well-known issue from CO₂cooled reactors
 - Grade 9 steel current issue
- 550°-600°C transition temperature for normal austenitic steels
- Key to low-cost technology

650°-800°C: Ni-based alloys

- No issues for Ni-based alloys
 - Low C solubility, protective Cr_2O_3 formation
- Similar rates for air, CO_2 and sCO_2

Little or no P effect @ 750°C

>800°C: challenging for superalloys/cermets/FeCrAl

- Initial results at 0.1 & 2 MPa
 - Subcritical P effect observed
- Mo/W cermets need coating
- Accelerated attack of Nibased superalloys
- SiC promising, but not MoSi₂
- FeCrAl attacked at 1200°C

 $|_{0.1 \text{ MPa}}$ – Al₂O₃ supposed protective?

ORNL sCO₂ project wrapping up in 2024 (originally 2023)

- Focus on 4 steels
 - BCC: 9Cr (G91), 12Cr (VM12)
 - FCC: 316H (16Cr-10Ni), 709 (20Cr-25Ni)
- Completed tasks
 - Reaction kinetics with and without impurities $(1\%O_2+0.1\%H_2O)$
 - Degraded protective Cr-rich oxide on 316H and 709
 - Evaluated 3 pack cementation coatings: G91+Cr, G91+Al, 316H+Cr
 - Cr: internal carburization observed in both alloys, less protective in $sCO_2+O_2+H_2O$
 - Al: ~20wt.%Al not sufficient to form protective Al-rich oxide in sCO_2 at 600°/650°C
- Tasks wrapping up
 - Creep testing Ni-base alloy foils (sCO₂ HX application)
 - Foils can show decreased strength compared to bulk material
 - More strongly affected by environment (example 1000 h 800°C air+10% H_2O)
 - Modeling C ingress
 - Determine maximum use temperature for steels to avoid C embrittlement

ORNL steel project started in August 2019

Test matrix & progress

Temperature	RG sCO ₂	+1%O ₂ +0.1%H ₂ O			
450°C (842°F)	2,000 h	1,000 h			
550°C (1022°F)	2,000 h	1,000 h			
650°C (1202°F)	2,000 h	1,500 h			

Autoclave: 300 bar sCO₂ 500-h cycles

~5 cm² alloy coupons + tensile specimens

- Four primary alloys in test matrix
 - T91: Fe-9Cr-1Mo, creep strength enhanced steel
 - VM12: Fe~12Cr-Co-W
 - 316H: conventional stainless steel
 - 709: advanced austenitic, 20Cr-25Ni+Nb
- 10 specimens of each alloy
- With and without impurities (open vs. closed)

Alloy	UNS	Cr	Ni	Mn	Si	С	Ν	Other
Gr.91	K90901	8.6	0.3	0.5	0.4	.10	.05	0.9Mo,0.2V
VM12	12CrCoW	11.5	0.4	0.4	0.4	.12	.04	1.6W,1.5Co
316H	\$31609	16.3	10.0	0.8	0.5	.04	.04	2.0Mo,0.3Co
NF709	\$31025	20.1	25.2	0.9	0.4	.06	.15	1.5Mo,0.2Nb

Baseline of research grade (RG) CO_2 : $\leq 5 \text{ ppm } H_2O$ and $\leq 5 \text{ ppm } O_2$

Measured rates in sCO₂ consistent with the literature

• Metric developed for Solar CSP

– Slow rate = OK for 100kh life

Ni-based alloys all "good"
Lifetime model: ≤ 800°C = 100kh

Steel limitations

- Ferritic-martensitic alloys <500°C
- Austenitic alloys <600°C
 - Obvious jump in kinetics
- Advanced austenitics (709), better
 - Value in 20-25%Cr, 20-25%Ni
 - Low values hard to measure

9-12Cr steels have similar rates in 276 bar steam

SS: faster attack with O_2/H_2O FeCr: Fe₂O₃ formation

- Stainless steel (316/709)
 - RG sCO₂: thin Cr-rich scale
 - Good C barrier
 - Impurities: duplex scale
 - Common with steels
 - Now is C ingress possible?
- 9-12Cr steels
 - 450°C: increased T91 attack
 - 550°-650°C
 - Clear duplex scale in both cases
 - With $1\%O_2$ form Fe_2O_3 layer
 - VM12: no benefit of higher Cr content after 1,000 h

Based on CSP (solar) metric: all limited to <550°C with impurities Rates for 709 (UNS S31025): may not reflect steady state at 1000 h

Similar T91 rates in steam. Are we really concerned about rates?

RG sCO₂: combination of mass change & 25°C ductility to illustrate issue with 316H at 650°C (709 not affected)

CAK RIDGE National Laboratory 500h & 1000 h measurements for each stainless steel

316H: not much change in 25°C ductility with impurities More mass gain, similar embrittlement at 650°C

High ductility & low mass gain

709 also showed drop in 25°C ductility at 650°C with the addition of O_2/H_2O impurities

500h & 1000 h measurements for each stainless steel

Low ductility & high mass gain

Bulk C measurements: Fe-rich oxides allow C ingress

- Measurements by combustion analysis, increasing with time
- Focus on 650°C results, less ingress at 600° and 550°C

sCO₂ impurities tend to increase C ingress (but not all cases)
 COAK RIDGE 883
 2024 FEC

GDOES of 709 specimens after 1000 h

GDOES: Glow discharge optical emission spectroscopy

650°C: more C ingress with impurities

Proprietary Cr pack coatings on Gr.91 tested at 650°C

- Four specimens tested at each condition
- Low mass gain maintained in RG sCO₂ to 2000 h (2 specimens)
- Much higher mass gain in sCO_2 with $1\%O_2$ -0.1%H₂O

SEM EDS: coating performance not promising

- Unable to form protective Cr-rich oxide with $1\%O_2+0.1\%H_2O$
- Cr-rich precipitates in coating (carbides by EPMA)

sCO₂ ± impurities: significant Cr consumption by C or O

- 1000 h/650°C: higher Cr consumption with impurities
- 650°C: temperature too high for ~110 μ m thick Cr pack coating

sCO₂ ± impurities: significant Cr consumption by C or O

- 1000 h/650°C: higher Cr consumption with impurities
- 650°C: temperature too high for ~110 µm thick Cr pack coating

2nd batch of pack coatings also tested at 600°C in sCO₂

- Cr on 316H: similar benefit as on T91
- Aluminized T91: mass gain not consistent with Al_2O_3 formation
 - Even more difficult for selective oxidation at 600°C

Chromized 316H: thin Cr-rich scale formed + precipitates

• Thinner coating formed on FCC 316H substrate

- Again, coating made by company, no details on process
- Beneficial effect in RG sCO₂ at 600°C after 1,000 h

Aluminized Gr.91: thick oxide after 500 h

- ~100 µm thick AI diffusion profile into substrate
- Surface oxide Al-rich but thicker than expected after 500 h at 600°C in ${\rm sCO}_2$

Thin walled heat exchanger:reduced 750°C creep lifetimefor 282 and 602CA foils282: Ni-19Cr-10Co-8Mo-1.5AI-2.2Ti-0.06C

- Lower stress (100 MPa) for weaker 602CA material
- Lowest lifetime for 100µm foils as expected

CAK RIDGE

23

But 500µm foil exhibited shorter life than 200µm!

Does corrosion affect foil lifetime? Yes! Foil creep specimens exposed 1,000 h at 800°C in wet air

Expected lifetime for wrought = \sim 1500h

CAK RIDGE

24

282: Ni-19Cr-10Co-8Mo-1.5Al-2.2Ti-0.06C 602CA: Ni-25Cr-9Fe-2.4Al-0.2Ti-0.2C

- Post-test characterization in progress
- 282: internal AI + Ti oxidation reduces γ' strengthening
- 602CA: Cr oxidation impacts carbide strengthening 202

One-dimensional Physics-based Modeling approach

 $-\alpha$ is mass transfer coefficient

- Assumed $a_{c,eq} = 1$ while a_c is carbon activity in the alloy at the oxide-alloy interface
- Use of independent thermodynamic-kinetic data (Thermo-Calc)
- Empirical description of grain boundaries (e.g., accelerated diffusion)
- Consideration of relevant elements & phases in commercial high temperature alloys and coating systems
- Thermodynamic calculations on multiple cores
 - 30,000h simulation of multicomponent-multiphase alloys in < 1 week

Model qualitatively predicted the observed differences in carburization behaviors between T91 and 316H after 1000 h at 650 °C in sCO₂

- > Almost complete carburization expected for a 1.5 mm T91 specimen
- > About 0.4 mm carburization depth predicted for 316H

Good agreement between the measured and predicted C-uptake for T91 and 316H after 1000h at 650 °C in sCO_2 (without impurities)

Linear extrapolation of GDOES profile from measurement depth to specimen center is most likely resulting in overestimation of C uptake

How long can 316H provide carburization resistance at lower temperatures?

Conservative estimates*: 316H predicted to resist carburization for up to 60,000 h at 450 °C and 3100 h at 550 °C

- *Time to start forming Fe-rich oxides when C ingress can begin
- > After C ingress begins, next stage is to model time to impacting mechanical properties
- $\underset{\text{National La}}{\overset{\text{OAK } R}{\rightarrow}}$ Strong need for model validation
- 28

Summary: sCO₂ is a challenging environment

- Steels degrading at 550°-650°C in 300 bar sCO₂
 - Increased attack when O_2 and H_2O impurities in sCO_2
 - Even 709 (20Cr-25Ni) showed signs of embrittlement at 650°C with O_2+H_2O
- Opportunity for coatings?
 - Pack Cr and AI coatings evaluated on T91 and 316H at 650°C in sCO_2
 - Cr on T91: reduced mass gain but internal carbides + less protective with O_2+H_2O
 - Initial exposure at 600°C in sCO₂
 - Al on T91: ~20wt.% Al not sufficient to form protective Al-rich oxide
- At 650°-800°C, Ni-based alloys appear compatible
 - Thin wall HX: creep testing 100-500 µm foils of 282 and 602CA in air:
 - Reduced lifetime especially for 100 µm foils
 - Further degradation when oxidized (800°C in wet air to accelerate effect)

Questions?

2024 FECM review

Post-600°C sCO₂ exposure room temperature tensile testing

- 0.015/min strain rate
- T91 HT: ~1050°C + ~700°C temper
- Pack aluminized T91
 - Reduced ductility as coated
 - Drop in UTS vs. as-coated
 - 1050°C pack affected properties
 - Similar to normalization (temper in sCO₂)
- Cr-coated 316H
 - Lower properties after coating
 - No ductility loss after 600°C sCO $_2$

