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Motivation
o Gas turbine engines for power generation are 

under transition to hydrogen-based combustion 
systems to achieve net-zero or net-negative 
carbon emissions. 

o A transition to hydrogen-based fuel combustion 
systems heavily relies on advancements in 
materials technology:
- Hydrogen burns ~250ºC hotter than natural 

gas.
- Current metal-based components are often 

operated very close to their melting points 
(within 100ºC) 

- Large amounts of water vapor production 
oxidizes current metal materials.

- Small molecular size of hydrogen interacts 
metals to hydrogen embrittlement and can 
cause dangerous fuel leaks.

Hydrogen-induced cracking in metal. Photo by CEphoto, Uwe Aranas.

Strength of various superalloys in combustor and afterburner application. [1]



Ceramic Matrix Composites (CMCs)

o CMCs are investigated as a possible alternative to metal 
alloy components in H2 gas turbine engines for their thermal 
and chemical resistivity as well as high customizability.
- Modular nature of composites allow for selection of fiber, matrix, and additives that 

tailor the material to the intended application.

- Have seen success in use as refractory materials in gas turbine engines using 
traditional fuels – must be adapted to address unique challenges posed by H2 
combustion.

o CMC production does not come without its own set of 
challenges:
- High processing temperatures during pyrolysis result in shrinking and thermal 

warping that impacts final part geometry.

- Outgassing of volatiles during pyrolysis result in highly porous matrix (densification 
via multiple re-infiltrations is necessary).

- Brittleness of CMC materials make them difficult to machine after manufacturing.
Micro-CT image of porous CMC cross section 

before densification.

Cf/ZrC CMC combustion chamber undergoing 
oxygen-hydrogen hot fire testing. [2]



Material Selection
o Yttria-Stabilized Zirconia is the ceramic fiber used in 

the presented CMCs
- Currently used in thermal barrier coatings
- Melting point of 2590ºC with continuous use limit of 2200ºC
- Excellent performance in corrosive & oxidizing environments
- High porosity of woven YSZ results in effective wetting and solution 

retention
- Phase-stabilized with Yttria eliminates disruptive phase transitions

Ceramic 
Precursor

Resulting 
Ceramic

Ceramic Yield 
(Literature)

Ceramic Yield of 
Precursor 

(Experimental)

SPR-688 SiOC 65-85% 79.08%

SMP-10 SiC 72-78% 73.02%

Durazane 1800 SiCN 80-90% 82.45%

o When selecting ceramic precursor, factors such as 
ceramic yield, workability, and thermal performance were 
considered
- Durazane 1800 was selected as the pre-ceramic polymer in this study 

for its higher ceramic yield and lower viscosity while maintaining 
comparable thermal performance

o Zirconium Oxide Rigidizer contains sub-micron particles of 
YSZ in a zirconium acetate aqueous solution
- Used in fabrication to provide dimensional stability and mechanical 

strength to laminates while increasing YSZ content

SEM images of YSZ plain weave (left) and close-up of 
individual YSZ fiber (right).



Manufacturing of CMC Parts through PIP

Hand layup of YSZ ‘preform’ 
consisting of 8 layers of YSZ 

fiber saturated in YSZ 
rigidizer

The ‘preform’ is dried in 
autoclave for 2 hours at 

180ºC

The preform is then saturated 
with pre-ceramic polymer via 

vacuum infusion

The polymer-infused laminate is 
cured in autoclave for 1 hour at 
180ºC then 2 hours at 200ºC

The ‘green body’ material is 
waterjet cut into desired 

geometry before undergoing 
pyrolysis

Samples undergo pyrolysis 
at 950ºC for 2 hours in N2 

atmosphere

Resulting matrix phase is 
amorphous

CMCs are reinfiltrated with 
more pre-ceramic polymer 

and cured in autoclave 
again

This ‘densifies’ the 
composite and reduces 

porosity

Reinfiltrated samples are 
pyrolyzed again under same 

conditions

o Polymer Infiltration and Pyrolysis (PIP) is the manufacturing method used 
in this study
- Relative ease and low cost of manufacturing make PIP an attractive option compared 

to other CMC manufacturing methods

- Volatilization of organic compounds in ceramic precursors result in very high initial 
porosity: multiple reinfiltrations required for dense samples

- Initial samples underwent 2 cycles of PIP



Hydrogen-Air Torch Test Setup

H2 Inlet

Air Inlet

Back 
Temperature 

Thermocouple

Ceramic Sample

Not Pictured:
IR Camera 

Reading Front 
Temperature

o Air and fuel flow rates measured with control orifices and 
upstream pressure regulators

o Heat flux is mapped at various distances from the torch tip

o Hydrogen torch gives us insight on how material behaves in 
hydrogen- and water vapor-rich erosion environment

Test Conditions
Heat Flux (W/cm2) 183.3

Flame Temperature (ºC) 2,000

Exit Velocity (m/s) 30

Equivalence Ratio >1

Exposure Duration (s) 600
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Hydrogen-Air Torch Test Results
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Post-Torch Test: Material Characterization
Intact Front Face Burned Front Face

Element Weight % Atom %
C K 14.8 28.1
N K 0.0 0.0
O K 29.6 42.2
Si K 27.1 22.0
Zr L 27.8 7.0

Element Weight % Atom %
C K 8.1 15.5
N K 0.0 0.0
O K 41.5 59.5
Si K 21.8 17.8
Zr L 28.6 7.0

o Pores in the matrix are filled 
after the torch exposure

o Formation of protective oxide 
plaques (SiO2)

o Large increase in oxygen 
content post-damage

Element Weight % Atom %
C K 4.8 8.6
N K 4.6 6.9
O K 32.0 42.4
Si K 55.1 41.7
Zr L 0 0

Element Weight % Atom %
C K 6.4 16.4
N K 2.7 5.8
O K 27.4 52.5
Si K 5.4 5.9
Zr L 58.0 19.4

Point 1

Point 4

Passive oxidation of SiC:

Spectral Mapping – distribution of elements on damaged surface

Occurs at oxygen pressures close to 1 bar and 
starts around 600ºC



Post-Torch Test: Mechanical Property Characterization

𝑓𝑓𝜎𝜎 =  3𝑃𝑃𝐿𝐿
2𝑏𝑏ℎ2

𝐿𝐿3 𝑑𝑑𝑃𝑃
𝐸𝐸𝑓𝑓 =  4𝑏𝑏ℎ3  𝑑𝑑𝑤𝑤

o Hydrogen flame damage had 
minimal effect on mechanical 
strength

o Matrix enhanced fracture strength 
(YSZ Tow 𝜎𝜎𝑓𝑓  =  1.5 𝑀𝑀𝑃𝑃𝑎𝑎)

o Average Values
- 𝜎𝜎𝑓𝑓  =  7.87 ±  0.16 MPa
- 𝐸𝐸𝑓𝑓  =  4.05 ±  0.26 GPa
- 𝑃𝑃𝑚𝑚𝑎𝑎𝑥𝑥 =  8.36 ±  0.08 N

3-point bending test of flame-damaged and control samples were compared to understand effect of H2 flame exposure on 
mechanical strength.
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Control 1 Control 2 Flame

Sample ΔP/Δw 
(N/mm)

Pmax 
(N) w(Pmax) (mm) σf 

(MPa)
Ef 

(GPa)
Control 1 40.819 8.363 0.168 7.73 3.78
Control 2 43.909 8.433 0.170 8.01 4.19

Flame 43.419 8.288 0.153 7.88 4.17

σf Stress required to fracture the sample

Ef Flexural modulus of elasticity

L Support span 
b Width of specimen
h Thickness of specimen
P Force
w Cross head displacement

ΔP/Δw Initial stiffness
Δw/Δt Deflection rate
ΔP/Δt Initial loading rate
Pmax Max load

w(Pmax) Deflection at max load



Hydrogen Combustion Engine Test Rig

CMC Panel 
Liners

CMC Back 
Temperature 

Thermocouple

Flow 
Temperature 

Thermocouple
Not Pictured:

Thermocouples 
Measuring 

Outside Wall 
Temperatures

Inside Wall 
Temperature 

Thermocouple

o Preliminary testing, targeting low 
temperatures (~700ºC) at atmospheric and 
pressurized conditions.

o Investigating effects of hydrogen flame 
traveling parallel to CMC (as opposed to 
through-thickness as in the torch test).

o Combustion testing duration of 2 minutes.






Hydrogen Combustion Chamber Test Results (1 Atm.)
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o The CMC liner withstood 2 minutes of continuous hydrogen combustion for multiple trials with no visible damage

o Flow temperature stabilized at ~680ºC while liner back face temperature did not increase past 185ºC

o Successfully protected the stainless-steel walls of the combustion chamber facility
- Lined wall was ~32ºC cooler than unlined wall by end of combustion

End of combustion



Hydrogen Combustion Chamber Test Results (5 Atm.)
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o While CMC liner still did not experience acute or visible damage, temperature profile was very different from atmospheric test

o Flow temperature stabilized at ~700ºC and liner back face temperature rose beyond 400ºC before lowering and stabilizing ~360ºC

o CMC still protected stainless-steel walls of the combustion chamber, however to a much lesser degree
- Lined wall was only ~17ºC cooler than unlined wall by end of combustion
- Could be explained by porosity in composite allowing pressurized hot gas to travel through voids and heat up backside of CMC

End of combustion



Numerical Modeling
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Numerical Modeling

o Sample absorbed heat flux 
lower than what applied by 
torch

- Heat reflection is a 
characteristic of YSZ

o Through thickness conduction 
coefficient lower than 
theoretical value

- Caused by voids in matrix

o Specific heat higher than 
theoretical value

- Likely from water vapor in 
voids in matrix
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Deep Artificial Neural Network Modeling

Model Name MAPE RMSE MAE R² Score

LASSO 25.94% 69.28 34.10 0.4166

Random Forest 12.84% 41.15 31.88 0.7941

Gradient Boosting 6.97% 25.44 16.91 0.9213

Extreme Gradient 
Boosting 6.98% 26.45 17.64 0.9150

Deep Artificial 
Neural Network 3.92% 16.45 14.07 0.9671

o Machine learning techniques are being explored to predict the ablation performance of the CMCs 
during the H2/Air torch test.

o ML models to predict long-term ablation performance will be developed based on material 
formulations, manufacturing parameters, and H2 combustion testing parameters.

Actual time-
temperature 

data

Predicted 
time-

temperature 
data

Input 
layer

Hidden 
layer

Output 
layer

X Y pred
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Synthesized Si(B)CN Pre-Ceramic for Surface Treatment
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o Numerical analysis of CMC behavior shows that a higher in-plane conduction coefficient, kl, would result in significant 
decrease in back-face temperature during hydrogen flame exposure. 

o As such, a Si(B)CN pre-ceramic polymer is being synthesized at UCF Composites Laboratory for potential use as a matrix or 
surface coating of CMC to increase in-plane heat dissipation, reducing thermal shock, hot spots, and back-face temperature.



Conclusions & Future Work
o The proposed CMC formulation and processing technique show promise for use in H2 combustion 

environments.

o Direct H2 flame exposure at high heat flux resulted in minimal damage to the CMCs, and post-
damage characterization shows favorable behavior by way of silica (SiO2 ) formation.

o The reduced insulation effectiveness of the CMCs at higher pressures suggest the need to further 
densify the material through more PIP cycles, reducing porosity and increasing thermal 
performance.

o A densification study will be carried out to identify optimal number of PIP cycles by measuring mass 
gained per subsequent cycle and using Micro-CT to assess porosity at each step.

o A full-sized CMC combustion liner will be manufactured using the material formulation presented, 
and larger time scale testing will be conducted to investigate long-term H2 combustion effects and 
survivability.
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