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Background
» Advanced Ultra-Supercritical (A-USC) power plants promise higher efficiency and lower emissions
achieved by steam conditions up to 760°C/35 MPa
« Two precipitation-strengthening Ni-based alloys, Haynes® 282 ® and Inconel® 740H®, are considered
as leading candidate materials for A-USC applications

* Due to their high temperature strength and corrosion resistance, both materials may also find
applications in hydrogen turbine, sCO, plants, concentrated solar, and advanced HRSGs
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Objective: This research provides a critical evaluation of advanced Ni-based alloys

supporting the manufacturing and use of components under A-USC and other
extreme environment conditions
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Crystal Plasticity Finite
Element (CPFE) modeling for
Triple-melt Forged Haynes 282
and Double-melt Inconel 740H
Plate




Crystal Plasticity Finite Element (CPFE) Modeling for Haynes 282 (H282)

and Inconel 740H (IN740H)

* CPFE is a versatile material modeling tool for investing the material’s
microstructure-properties relationship and predicting material’s

deformation and failure behavior, e.g., during service or forming process.

* The target of work is to establish model for H282 and IN740H that
predicts the deformation, ductility, and fatigue behavior under
relevant service conditions, considering the influence from the
microstructure
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Step 1, Conversion of EBSD into CPFE model

=

Continuum grain elements

iy mOE ) B
& 4 v, N

L7 N
@9

:“""

g
ol

» * Slip-induced plastic flow

!

3

2
)

I
4

e Dislocation creep

2
il ‘-‘

e Strain hardening

5
\J‘
-~V /&

5\
Y

* Damage and Intragranular fracture

—

~» Grain boundary interface elements

o
!"F"‘\e
R

e Grain boundary diffusion

200

_ e

(EBSD) of IN740H High resolution FE mesh

(Coble creep)

* Grain boundary damage

Convergence study for CPFE model

¥ IN740H  (111) Pole figures:

t Minimum area for model




Step 2, Model parameter calibration for tensile testing of H282 at 760°C

Most parameters can be calibrated from
tensile tests
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However, with occurrence of necking
before final fracture, the measured stress-
strain does not reflect the ‘true’ behavior of
the microstructure, due to the very
heterogeneous deformation
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A novel macro-micro approach is developed in this work to
find grains’ intrinsic plasticity and failure properties.
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Macro model simulations adequately captured the stress-strain, necking strain and reduction of area with
experiments Simulation vs experiment stress-strain
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; The time- N
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By using the local true ‘stress-strain’ of necking zone center to calibrate the microstructure-
model, the material intrinsic parameters (such as rate-sensitivity parameter and material true
ductility) are uncovered.
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* A manuscript “A Macro-Micro Approach for Identifying Crystal Plasticity Parameters for Necking and Failure in
Nickel-Based Superalloy” is under review for International Journal of Plasticity.



Step 2, Model parameter calibration for tensile testing of IN740H at 760°C
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* The fractography suggest grain boundary (GB) sliding is responsible for failure at lower strain-rate
« The GB sliding and damage is explicitly modeled in CPFE using grain boundary interface elements.
« The additional creep tests data are used to calibrate the GB model parameters.
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in creep mechanism state creep strain rate is obtained




The intergranular to intragranular fracture
transition is well-captured with CPFE model
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Testing of
Large Wye
Block

Forging
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Background

onel alloy 740H

Age hardened Ni-base alloy developed for
boiler tube

* Characterized under US DOE AUSC program

* Creep and hot corrosion resistance,
Weldability, Microstructure stability

e Can be made in large size components

* Used as tube, pipe and fittings for SunShot,
STEP, Net Power and Gen 3 CSP demos

° InC

 DOE/FE AUSC ComTest

* Wye block deliverable
* Ingot produced by Special Metals
* Wye design by EPRI

* Forging, heat treatment and machining by Scot
Forge

Mockup for AUSC Boiler (GE Power)



Manufacturing the Wye Block

* Ingot
e VIM-ESR-VAR
* 30,250 Ib, Cropped and Ground

* Forging
* Upset and Draw, ~4:1 Reduction
e Detail not Disclosed
* Furnace cool to 1200°F, Air cool

* Heat Treatment

e Solution anneal 8 hr at 2010°F,
Cooling not reported

* Age 8 hr, 1450°F, Water Quench

* Machining
e Partial for cost estimate

Conditioned Ingot

Forged Preform



Cutting and Testing Plan

* Cutting by ATl and SMC
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Testing by Westmoreland and SMC

RTT — E&C 3 directions

HTT - E&C 650,750,850°C
RT CVN - E&C 3 directions
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Microstructure — optical and
SEM



Preliminary Results

Tensile data from near edge and center of Wye Block
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* Creep Testing
* Metallography
* More detailed assessment of forge and stress cracking

* Incorporate into EPRI Conf paper on effect of cooling rate after
solution anneal and section size on properties of 740H

* Develop generic protocol for forging, heat treating and machining
large 740H parts

* Material available for other DOE programs
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