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Types of Transfer Learning Approaches
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ResNetImageNet
14M images, 200 classes

trained on

Predict 201st classadd fresh layers, fine tuning, etc.

Transfer learning with fine tuning/new layers

Physics based problems

(Goswami et al., 2022)

Conditional embedding 
operator theory (CEOT)

Shortcomings CEOT requires that underlying of source and
target parameters share the same distribution

Hyperelasticity
Parameters: displacement sources

Transport in porous media
Parameters: velocity on left BC

Flow to coupled poroelasticity
Parameters: permeability fields

Different physics

Different parameter distribution
Swin Transformer



Transfer learning for multiple physics
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Same geologic site

Geologic features
Operational 
conditions
Number of wells

Multi-physics

Single-phase flow
Multi-phase flow
Multi-phase flow 
and poroelasticity

Accuracy vs. 
training samples

Can we achieve 
acceptable accuracy 
with less training 
data?

 Illinois Basin – Decatur 
Project 

 Heterogeneity in x-, y-, 
and z-directions

 Single injection well

 Wyoming CarbonSAFE

 Different heterogeneity 
with geologic 
formations

 Multiple injection wells

Data: CarbonSAFE WYData: IBDP

Utilize prior knowledge

Surrogate: IBDP Surrogate: CarbonSAFE

Current Topic
Our future work
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Progressive learning

Information transfer through gates in hidden 
layers
Weights in hidden layers are used to control 
information flow from parents models to 
current generation, i.e., Weights are increased if 
output of each block is useful, and vice versa

Different topology and sizes of input dimension 
can be handled with linear embedding layer 
through data input stream

Rusu et al. (2016, Progressive Neural Networks)Kadeethum et al. (Sci Rep., 2024)
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Method: Sandia Sierra Mechanics for Multiphysics Simulations

Kadeethum et al. (ARMA, 2024)

• Sandia Sierra Mechanics Thermal/fluid module, ARIA (FE, unstructured mesh ~ 1M DOF)
• CO2 Injection through CCS1 using a string function (better representation of well injection physics)
• Injection history is based on actual daily injection rates
• Simplified layered model domain with homogeneous/anisotropic domain and one single fault
• Single phase, multiphase, multiphase+poroelasticity (multiphase+thermoporoelasticity for EY24)

Single phase Multiphase Multiphase +
poroelasticity

A total of 90 cases for training data generation
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Progressive-Improved Neural Operator (p-INO)
• INO has been developed in Task 5 based on DeepONet architecture with subsampling based 

training to handle a large training data very efficiently (e.g., 3 hrs training time for IBDP case)
• INO can handle unstructured/structured data
• Trained INO model can predict at any positions and any time within interpolation regime

Kadeethum et al. (Geoenergy Sci. Eng., 2024)
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Results: Benefits of progressive learning
• Progressive learning can improve validation loss with 30/75 training cases for both cases
• Note that 0 parent means no progressive transfer learning

pressure: 1-phase to 2-phase pressure: 1-phase to 2-phase with mechanics
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Results: Benefits of progressive learning
• More parents lead to higher accuracy with 30 training cases
• Two parents case with 30 training cases perform better than no parent case with 75 training cases, 

highlighting accuracy improvement as well as less data requirement

pressure: 1-phase to 2-phase with mechanics

More parents better accuracy Less training samples but achieve 
similar level of accuracy
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Results: around fault 
• More parents lead to higher accuracy with 75 training cases
• Two parents case with 30 training cases perform better than no parent case with 75 training cases, 

highlighting accuracy improvement as well as less data requirement for fault zone

pressure: 1-phase, 2-phase to 2-phase with mechanics
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Results: Different geometries and physics 
• Progress learning can be applicable for different geometries, boundary conditions, and different 

physics (e.g., from flow/transport to mechanics)

Parent models

problem #1 problem #2

problem #3 problem #4

accuracy gained by progressive learning

Kadeethum et al. (Sci Rep., 2024)

Target problem
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Summary
Primary benefits:

• Progressive learning can enhance accuracy with the same training data as in no 
progressive case

• Effectively reduce the training dataset generation requirements for more complex 
physics

• Current framework can be applicable for many different scenarios such as multiple 
well configurations and optimal injection cases

We aim to improve the following questions:
• Can we train base (parents) models using data generated by simple physics model 

rather than full physics model(s)? (e.g., Eikonal equation for pressure, percolation 
model for saturation)

• Current framework becomes expensive with many parent models. Can we prune 
unnecessary parts of parent models through more efficient neural networks such as 
attention mechanisms as in transformer architecture?
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