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Overall Project Objectives:

Develop a transformational molecular layer deposition tailor-made 

sorbent/PSA process (MLD-T-S/PSA) that can be installed in new or 

retrofitted into existing pulverized coal (PC) power plants for CO2 capture 

with 95% CO2 purity and a cost of approximately $30 per tonne of CO2 

captured; it will be ready for demonstration by 2030.

Project Overview

Funding: $3,000,000 from DOE; $759,206 Cost Share     Overall Project Performance Dates:10/1/2019-12/31/2025

    

Background & Motivation:

Integration with coal-fired power plants: installed downstream of FGD 

UB’s MLD-T-S for optimized CO2 capture performance

Chemisorption Inhibition by one-cycle MLD/ALD

USC’s unique PSA process flow sheet from FGD to CO2 compression

Technical and economic advantages

Advanced Sorbent Fabrication Procedure 

to Reduce Manufacturing Cost

▪ MLD/ALD for uniform internal 

modification from vapor phase

▪ Low cost MLD/ALD precursors

▪ Successful commercial roll-to-roll 

production

Ease of Scale-Up
▪ Pellets/beads of commercial 

sorbents can be directly used

▪ One-cycle deposition

Long-Term Stability and Ease of 

Regeneration

▪ MLD/ALD modification introduces 

inorganic materials (e.g., TiO2)

▪ Stable base sorbent materials, such 

as zeolites

▪ Lower temperature for regeneration

USC proprietary PSA Cycle 

Schedule Concept
 

MLD-T-S: Desired PSA Performance, 

Contaminant Tolerance, and Scale-up 

PSA for CO2 Capture: DAPS Simulation and 1-

bed PSA testing

Summary
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MLD-T-S Compares Favorably to 13X & UTSA-16
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MLD-T-S Scale-up

Note: MLD-T-S can be fully regenerated at 200oC.

PSA for CO2 Capture: PSA Skid Construction 

Working capacity

: Selectivity

: Heat of adsorption

: Feed concentration

A) 3-liter ALD reactor; B) 200g MLD-T-S batch fabricated in a single batch; C) 1kg of accumulated MLD-T-S.

0.13 kPa H2O: 0.054 mmol H2O/(gMLD13X·cycle)

0.50 kPa H2O: 0.208 mmol H2O/(gMLD13X·cycle) 

1.00 kPa H2O: 0.415 mmol H2O/(gMLD13X·cycle)

 Saturation capacity is ~14 mmol/g

• Realistic P/VSA schedule was emulated 

on a small bed of MLD-T-S

• CO2/N2 with 0.13, 0.50, & 1.00 kPa H2O 

were explored

• Reversible adsorption of H2O mitigated 

declined in CO2 working capacity 

Small adsorbent bed for flue 

gas contaminant testing

• Optimized MLD-T-S shows improved CO2 working capacity and CO2/N2 SF compared to 13X

• When exposed to CO2/N2 containing H2O under an emulated P/VSA schedule, MLD-T-S 

showed stabilized loss in CO2 working capacity ≤ 0.5 kPa H2O.

• MLD-T-S was fabricated at kg-scale and sent to collaborators for P/VSA testing 

• 3-bed PSA skid testing underway at USC; testing to begin soon at NCCC

• Large scale PSA process simulations continuing for process optimization

• 1-bed PSA testing with MLD2 at USC starting soon

Front View Photograph of the USC 

3-Bed PSA System
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Schematic of the USC 3-Bed PSA 

System
LabVIEW Schematic of the USC 3-

Bed PSA System

Status of the USC 3-Bed 

PSA System

▪ Construction 100 % 

complete

▪ Start-up and 

troubleshooting 

complete

▪ Testing at USC 

underway with 13X 

zeolite

▪ Testing at USC with 

MLD2 zeolite will 

follow

▪ Working out details 

to test at the NCCC

▪ NCCC testing with 

MLD2 zeolite  

forthcoming

Back View Photograph of the USC 

3-Bed PSA System

USC patented multi-feed step and multi-light 

reflux step PSA cycle schedule

F1 to F3Bed 1-3

HRBed 4

CnDEqDBed 5

LR1 to nLR
Bed 

6 to 5+nLR

LPPEqUBed 6+nLR
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CO2 Recovery in HP, %

200s     13X         10kPa     10% LRR
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200s     MLD2     12kPa     12% LRR

200s     MLD2     12kPa     15% LRR

Comparison of MLD2 and 13X VSA process 

performances via DAPS simulations: Effect of the low 

vacuum pressure (PL) and the light reflux ratio (LRR) on 

the process performance in terms of the CO2 purity and 

CO2 recovery in the heavy.
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Comparison of MLD2 and 13X VSA process 
performances via DAPS simulations: Effect of the 
low vacuum pressure (PL) and the light reflux ratio 

(LRR) on the process performance in terms of the O2 
concentration in the heavy product.
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Comparison of MLD-T-S and 13X VSA process 

performances via DAPS simulations: Effect of the low 

vacuum pressure (PL) and the light reflux ratio (LRR) on 

the process performance in terms of the energy penalty.

Simulations of a VSA System with 8 Units, 3 Feed Beds, 6 Light 

Reflux Beds, RLD = 1.0, Dp = 9 mm and T = 40 oC.

Photograph of the USC 1-Bed PSA System 

Used for Testing Scaled Up MLD-T-S

MLD-T-S Generally Performs Better Than 13X
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