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Objectives: Accurate history matching of CO2 
operations and real-time forecasting CO2 and 
pressure plume development at the Illinois Basin-
Decatur Project (IBDP) site by

  (1) developing a generative model (i.e., variational 
autoencoder, VAE) for parameter (3D permeability, 
porosity, and fault multipliers) generation, 

  (2) learning low dimensional representations in 
latent space to parameterize for data assimilation, 

  (3) utilizing machine learning driven surrogate 
models for fast and accurate forward prediction

Figure 1. (top) A schematic of latent space-based data assimilation 
(LSDA) with ML forward models and (bottom) variational autoencoder 
for 3D permeability, porosity, and fault transmissivity multipliers.

Two ML forward models
  (1) CNN-LSTM model for bottom hole pressures 

at injection (CCS1) and monitoring wells (VW1, 
WB1-6) with input of static parameters (3D x,y,z 
permeabilities, porosity, and x,y,z transmissivity 
multipliers), and injection data (CO2 injection 
rates, cumulative volume, and time)

  (2) Improved neural operator (INO) for 3D 
pressure and saturation prediction (monthly) 
using updated model parameters from LSDA

RMSE = 
4.4psi

ML training data generation at IBDP
 The IBDP site consists of a single injection well, a verification 

well, and a geophysical monitoring well. 
 Only bottom hole pressure data at the injection and 

monitoring wells are used for current DA. 
 ECLIPSE Compositional Model (E300) for reservoir simulations:

- Grid: 126 * 125 * 110 (1.73 Million Cells)
- Simulation Period: 11/02/2011-12/31/2015
- 3D pressure and saturation (monthly, 50 time steps)
- Pressure/CO2 saturation at wells (daily)

Figure 2. 3D distribution of low permeable baffles (left), 
porosity (middle), and permeability distribution (right). 

Figure 3. Observed (black) and Eclipse simulations-based 
(color) daily bottom hole pressure data at the CCS1 injection 
well (left) and multi-depth sensors at a verification well (VW1). 

Figure 5. A snapshot of vertical cross-sectional pressure 
distribution at the end of CO2 injection (3 years), ML-prediction 
error, and root mean square error (RMSE) and mean absolute 
error (MAE) changes over time and over layer.

Figure 4. CNN-LSTM  
model for BHP prediction 
at CCS1 and VW1 wells.

Figure 6. VAE prior (left) and LSDA (right) outcomes to show 
3D x,y,z permeabilities, porosity, and x,y,z transmissivity 
multipliers at CCS1 and six sensor depths at VW1.

History matching results
➔ LSDA takes ~ 10min using a laptop computer.

(1) Synthetic case

(2) IBDP observation case
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Figure 8. Area of review comparison for CO2 saturation (top) and 
pressure (bottom) as well as CO2 plume distribution (right)..

Future works
 HM workflow update with multiple data (BHP, CO2 saturation, and 

temperature at CCS1 and VW1 wells. 
 A wider range of static parameter fields for ML training data

Figure 7. History matching results with bottom hole pressure data 
from (1) synthetic and (2) real IBDP cases. 2 years calibration & 
blind test for the rest of period. 
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