Robust data assimilation/history matching applications for the IBDP with

generative priors
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Objectives: Accurate history matching of CO,,
operations and real-time forecasting CO, and
pressure plume development at the Illinois Basin-
Decatur Project (IBDP) site by
(1) developing a generative model (i.e., variational
autoencoder, VAE) for parameter (3D permeability,
porosity, and fault multipliers) generation,

(2) learning low dimensional representations in
latent space to parameterize for data assimilation,
(3) utilizing machine learning driven surrogate
models for fast and accurate forward prediction
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Figure 1. (top) A schematic of latent space-based data assimilation
(LSDA) with ML forward models and (bottom) variational autoencoder
for 3D permeability, porosity, and fault transmissivity multipliers.

ML training data generation at IBDP

¢ The IBDP site consists of a single injection well, a verification
well, and a geophysical monitoring well.

¢ Only bottom hole pressure data at the injection and
monitoring wells are used for current DA.

¢ ECLIPSE Compositional Model (E300) for reservoir simulations:
- Grid: 126 * 125 * 110 (1.73 Million Cells)
- Simulation Period: 11/02/2011-12/31/2015
- 3D pressure and saturation (monthly, 50 time steps)
- Pressure/CO, saturation at wells (daily)

Figure 2. 3D distribution of low permeable baffles (Ieft)
por05|ty (middle), and permeability distribution (right).
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Two ML forward models History matching results
(1) CNN-LSTM model for bottom hole pressures = LSDA takes ~ 10min usmg a laptop computer

at injection (CCS1) and monitoring wells (VW1,

ith i : (1) Synthetlc case £ ey
WB1-6) with input of static parameters (3D x,y,z . L ataame
permeabilities, porosity, and x,y,z transmissivity

multipliers), and injection data (CO2 injection - | m ,
rates, cumulative volume, and time) - M
(2) Improved neural operator (INO) for 3D ‘
pressure and saturation prediction (monthly)
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Figure 3. Observed (black) and Eclipse simulations-based
(color) daily bottom hole pressure data at the CCS1 injection
well (left) and multi-depth sensors at a verification well (VW1).

Figure 7. History matching results with bottom hole pressure data
from (1) synthetic and (2) real IBDP cases. 2 years calibration &
blind test for the rest of period.
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Figure 5. A snapshot of vertical cross- sectlonal pressure e e e i
distribution at the end of CO, injection (3 years), ML-prediction |
error, and root mean square error (RMSE) and mean absolute |
error (I\/IAE) changes over tlme and over layer. - .
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o o i | H H ‘ E; Figure 8. Area of review comparison for CO2 saturation (top) and
. B ? pressure (bottom) as well as CO2 plume distribution (right)..
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Figure 6. VAE prior (left) and LSDA (right) outcomes to show
3D x,y,z permeabilities, porosity, and x,y,z transmissivity
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Future works

¢ HM workflow update with multiple data (BHP, CO2 saturation, and
temperature at CCS1 and VW1 wells.
¢ A wider range of static parameter fields for ML training data
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