Bench-scale Development of a Transformational Switchable-hydrophilicity Solventenabled Absorption Process for Energy-efficient CO₂ Capture and Fixation

Xiansen Li¹, Hua Zhu¹, David Atwood², Nour Alwohoush³, Bikram Bhatia³ ¹ Thermisoln, LLC, Lexington, KY ² Department of Chemistry, University of Kentucky, Lexington, KY ³ Department of Mechanical Engineering, University of Louisville, Louisville, KY

MOTIVATION

A new switchable-hydrophilicity solvent (SHS) based post-combustion CO₂ capture technology enabling both the carbon capture and fixation can significantly improve the energy efficiency of CO₂ capture process

_ENGES IN CCS WITH CONVENTIONAL AMINE ABSORBENTS

- □ Absorption reaction/extraction coupling to break up chemical

deliver energy-efficient carbon

CO₂ ABSORPTION

Solvent	Amine content (M)	Absorption T (°C)	Absorption time (min)	Aqu. vol. (%)	Aqu. CO ₂ loading capacity (mol/kg)
SHS-1	3.5	40	10	60.40	1.039
			20	72.45	1.605
			30	73.58	2.040
			60	76.27	2.533
MEA	5.0	40	10	100	0.615
			20	100	1.226
			30	100	1.981
			60	100	2.211

✓ Aqueous-phase carbon loadings are enriched due to liquid-liquid phase separation (LLPS) ✓ Aqueous-phase volume increases over time \checkmark CO₂ absorption capacity shows advantage over 30 wt.% MEA solvents under the same operating conditions

After regeneration, aqueous phase accounts for 60.6 vol.%

Regeneration

10 min @ 65 °C

- Aqueous-phase carbon loading capacity takes up 97.7%
- Regenerated solvent behaves like a fresh chemical

RICH SOLVENT REGENERATION

Spontaneous LLPS promotes a deep regenerability of rich solvents under mild operating conditions

GYPSUM UPCYCLING INTO LIMESTONE

- ✓ FGD gypsum was fully transformed into well-faceted calcite within 10 min at 40 °C
- 1 kg of FGD gypsum was completely converted into calcite within 10 min at 60 °C

KEY COMPONENTS OF CO₂ CAPTURE PROCESS

CARBON CAPTURE PERFORMANCE METRICS

Metrics	Values
CO ₂ loading capacity at 40 °C	≥ 2 mol/kg
Overall cyclic CO ₂ -equivalent loading capacity	≥ 1.8 mol/kg
CO ₂ absorption time	≤ 10 min
ER of rich solvents at $T \le 65 ^{\circ}\text{C}$	≥ 95%
Regeneration reaction time	≤ 10 min
Gypsum waste purity	≥ 95%
Gypsum conversion efficiency	≥ 95%
Gypsum carbonation time at $T \le 65 ^{\circ}\text{C}$	≤ 10 min
Limestone purity	≥ 95%
CO ₂ removal efficiency	≥ 90%
Final CO ₂ purity in vapor phase	≥ 95%
Increase in cost of electricity generation	≤ 35%
Overall CO ₂ capture cost	~\$30/tonne

FUTURE WORK

- Upgrade the whole carbon capture system to realize its fullscale operations at a bench level
- Design and assemble the atomizers to enable an overall solvent flowrate up to 2 GPM
- A 2nd-generation scrubber was built and commissioned inhouse with novel packing materials in place
- CO₂ absorption kinetics and overall CO₂ cyclic loading capacity will be further enhanced
- Seamlessly integrate the key three-unit operations to enable continuous operational processes
- More exhaustive TEA of this carbon capture technology will be conducted to gauge its viability for future scale-up

ACKNOWLEDGEMENTS

This project is financially supported by the DOE SBIR/STTR Programs (DE-SC0022734) with Mariah I. Young as the PM, and by the KY Cabinet for Economic Development (2022-002-006). The authors would also like to thank LG&E and KU Energy, LLC for its generous FGD gypsum offerings.