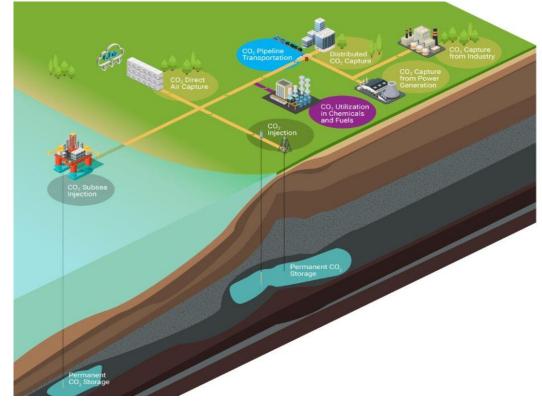


Transformational Nano-confined Ionic Liquid (NCIL) Membrane for ≥97% CO₂ Capture from Natural Gas Combined Cycle Flue Gas

About GTI Energy

GTI Energy is a leading energy research & training organization

Across the entire energy value chain


GTI Energy Seeks to Secure, Manage, and Support Large Pilot-Scale and **Demonstration-Scale Carbon Capture**, Transport, Use, and/or Storage Projects

Why GTI Energy

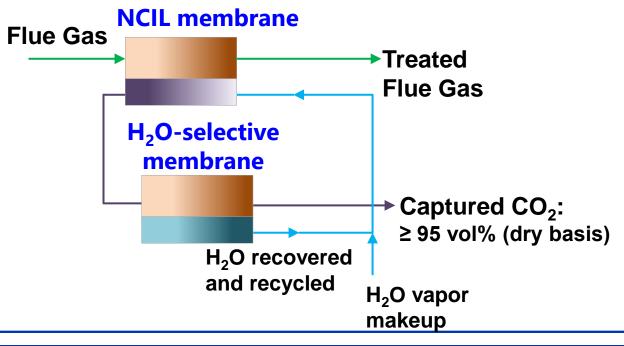
- Our mission is to be a trusted partner with Industry, Government, and Communities for developing, scaling, and deploying solutions for the transition to low-carbon, low-cost energy systems for public benefit
- We see CCUS as important options to achieve net-zero carbon emissions and advancing these is consistent with our public mission
- We are uniquely qualified to offer services across the entire value chain
- We are actively engaged in and have decades of experience in the development of technologies
- Experienced in managing large integrated projects (examples: H₂ Hubs, STEP, CarbonSAFE, etc.)
- We execute a large portfolio of Government contracts annually with our strong technical, administrative, and organizational structure

GTI CCUS Program

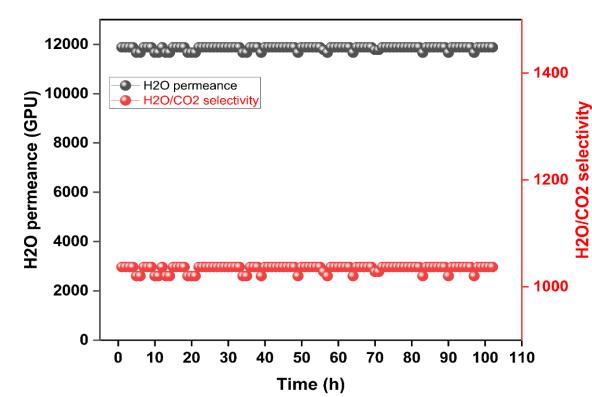
We do capture, conversion, **CDR**, and transport and storage

Active DOE Projects Carbon capture

- FE0031946: 20 TPD facilitated transport membrane (FTM) for power plant application
- FE0032466: 3 TPD ROTA-CAP for steel plant application
- FE0032463: 3 TPD FTM for cement plant application (sub to OSU)
- FE0031598: Bench-scale GO-based membrane
- **FE0032215**: Nano-confined ionic liquid membrane
- **FE0031730**: Size-sieving adsorbent (sub to UB)
- **Carbon conversion**
- FE0031909: Membrane reactors for conversion of CO_2 to fuels/chemicals
- **FE0032246:** Converting CO₂ to carbon-negative alternative cement (sub to WashU)
- **Carbon dioxide removal (CDR)**
- **FE0031969**: Trapped small amines in capsules (sub to UB)
- **Carbon transport and storage**
- FE0032239: CarbonSAFE Phase II

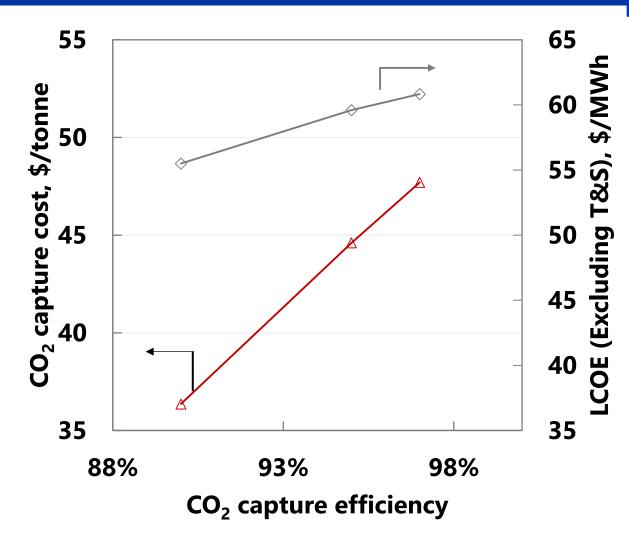

Shiguang Li, Weiwei Xu, Qiaobei Dong, Howard Meyer, GTI Energy Miao Yu, Fan Wang, Dinesh Behera, The State University of New York at Buffalo (UB)

NCIL membrane


Transformational structure Nano-confined ionic liquid layer SWCNT GOQD orous polymeric suppo

- Nano-confined space between single-walled carbon nanotube (SWCNTs), combined with nano-sized nitrogen-doped graphene oxide quantum dot (GOQDs) with rich oxygen-containing functional groups, stabilizes the amino acid ionic liquid with amine groups during membrane operations
- The enhanced viscosity of NCIL, resulting from the nano-confined space in SWCNT mesh and favorable interactions between rich functional groups on GOQDs and ILs, significantly inhibits N_2 permeation

Innovative process design: NCIL membrane integrated with dehydration membrane to enable $\geq 97\%$ CO₂ capture


Feed: 4-6% CO2 Membrane Membrane area, cm² Temperature, °C Feed pressure, bara Permeate pressure, bara Feed composition, vol% CO_2 capture efficiency CO₂ dry-basis purity, vol%

High membrane performance obtained **NCIL** membranes showed CO₂ capture as high as 97.6% with CO₂ dry-basis purity of 96.6% H₂O vapor sweep in permeate 75 70 1.0 0.10 5.4% CO₂, 9.6% H₂O, 85.0% N₂ 97.6% 96.6%

Dehydration membranes showed high H₂O flux and high H₂O/CO₂ selectivity, good stability at 70°C


Initial TEA indicates 23% reduction versus Base Case B31B.97

Technology	CO ₂ capture cost at 97% capture, \$/tonne
Baseline Case B31B.97	61.8
NCIL membrane process	47.7

Acknowledgements

Financial and technical support

For additional information contact Dr. Shiguang Li, R&D Director, GTI Energy, SLi@GTI.energy; 847-544-3478