

Optimization of Membrane-based Carbon Capture using Dimensional Analysis, CFD and Process System Engineering

Hector A. Pedrozo^a, Cheick Dosso^a, Thien Tran^{b,c}, Lingxiang Zhu^{b,c}, Victor Kusuma^{b,c}, David Hopkinson^b, Lorenz T. Biegler^a, and Grigorios Panagakos^{a,b,c}

^aDept. of Chem. Eng., Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Contractor, 626 Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mills Rd, Pittsburgh, PA, 15236, United States, ^cNETL Support Cochran Mil

Introduction

- Carbon capture technologies based on polymeric membrane with high CO₂ permeance, high CO_2/N_2 selectivity, and stability can be competitive, if properly structured. • Elucidation of transport mechanisms with Computational Fluid Dynamics (CFD) simulations can inform the design of modules and stacks of polymeric membranes under different conditions. • Use of dimensional analysis to describe the physics of the processes, leading to simplified correlations and providing insights into the impact of different scaling parameters. • Multi-stage membrane configurations are needed to achieve high capture rates and high purity simultaneously. • Process superstructure exploits information from rigorous CFD models. • Membrane Systems Engineering, based on surrogate models carrying the information from the rigorous CFD simulations, can reveal the true potential of this technology. Membrane Designs •Area per membrane sheet: 24 cm² Number of sheets: 1 Total area membrane: 24 cm² •CO₂ Permeance (GPU): 1600 and 3200 Design 1A Selectivity: 28 and 32
 - •Area per membrane sheet: 24 cm² Number of sheets: 5 •Total area membrane: 120 cm² •CO₂ Permeance (GPU): 1600 and 3200 Design 1B Selectivity: 28 and 32 •Area per membrane sheet: 96 cm² Number of sheets: 2 •Total area membrane: 192 cm² •CO₂ Permeance (GPU): 1600 and 3200 Design 2A Selectivity: 28 and 25 •Area per membrane sheet: 96 cm² Number of sheets: 10 •Total area membrane: 960 cm² •CO₂ Permeance (GPU): 1600 and 3200 Design 2B Selectivity: 28 and 25 العرف ا

Dimensionless Numbers

Dimensionless feed flow	$\boldsymbol{F^{d}} = \frac{N^{inlet}}{Q_{CO_2} A_M P^{feed}} =$	$\frac{P^{feed}}{RT} U \ a \ b \frac{1}{Q_{CO_2} La P^{feed}} = -$
Pressure ratio	$\boldsymbol{P^{ratio}} = \frac{P^{feed}}{P^{perm}}$	Process va <i>a, b</i> : width and height of side
Selectivity	$Sel = \frac{Q_{CO_2}}{Q_{N_2}}$	L: membrane length A_M : area of the membran N^{inlet} , $N^{inlet}_{CO_2}$: inlet total a P^{feed} , P^{perm} : feed and pe
Inlet CO ₂ concentration	$x_{CO_2}^{feed} = \frac{N_{CO_2}^{inlet}}{N^{inlet}}$	Q_{CO_2}, Q_{N_2} : permeances of U: gas superficial velocity V_{CO_2} : mass transfer coeff τ_m : time scale of mass tr

Disclaimer-This project was funded by the United States Department of Energy, National Ener implied, or assumes any legal liability or responsibility for the accuracy, completeness, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Process System Engineering approach

Optimal operating conditions for the membrane

Stages			
Input variables	M1	M2	M3
Dimensionless feed flow (<i>F</i> ^{<i>d</i>})	0.21	0.41	0.29
Inlet CO ₂ molar fraction	0.73	0.31	0.12
Pressure ratio (P ^{ratio})	2.42	8.65	11.90
Selectivity	33.02	37.39	35.61
CO ₂ recovery	0.813	0.715	0.709
CO ₂ purity	0.950	0.839	0.510

Conclusions

- CFD model for fluid flow and diffusion
- Validated bench scale model
- Dimensional Analysis (DA) dimensionless variables separations: F^d , P^{ratio} , Sel, $x_{CO_2}^{feed,initial}$
- The dimensionless feed flow presents a relevant **physical meaning** associated with the time scales of mass transfer through the membrane and time scale of fluid to exit the feed side
- Kriging-based surrogate models were built to determine the CO_2 recovery and CO_2 purity in the retentate for a given combination of dimensionless variables
- Optimal design with three membrane stages shows a capture cost of 23.62 \$/t-CO₂

• low relative error compared to experimental

provide **four** can for the membrane