Pigman College of Engineering University of Kentucky_®

Institute for Decarbonization and **Energy Advancement** at PPL R&D Center

DE-FE0032134, Dual-loop Solvent-based CCS for Negative CO₂ Emissions with Lower Cost

UK Dual Loop Approach for Point Source Treated Flue Gas with <100 ppm CO₂

Building on DAC with H₂ Production Technology □ Inorganic, solvent-based \Box Electrochemical regeneration with H₂ and O₂ production \Box 7,700 kg CO₂/year Demo at EW Brown

Generating Station, a PPL Corporation Facility, 350 kg H₂/year, 470 W Regenerator, 2025-2026

□ DAC Hub Feasibility Study, ≥3,500 tonne CO_2 /year per capture location with 160 tonne H₂/year and 1040 kW regenerator

Building on Point Source Technology

- □ Solvent-independent process
- □ Engineering Scale, 15 TPD, Since 2015 at EW Brown Generating Station, a PPL Corporation Facility
- □ 3 TPD, Nucor Steel Gallatin, 2025
- □ 9.3 TPD, Vitro Architectural Glass,
- □ 215 TPD, Cane Run Generating Station (CRGS), a PPL Corporation Facility, 20230
- □ 1.7M TPY, CRGS, FEED complete 8/2025

Bench Demonstration at 0.1 MWth Unit

 $\Box 3/1/2022$ to 11/30/2025**□**Resulting TRL 4 Existing UK CO₂ Capture Unit Applied and UK WLS Solvent as Primary Loop □Polishing Loop Designed, Integrated, Operational and Being Tested □Variable CO₂ Capture Efficiency in the Primary Loop TEA, LCA, EH&S Upcoming

Continuous Mode Operation with Electrochemical Regenerator

Demonstrated Treated Flue Gas with Lower CO₂ Than Air

—Primary Loop Outlet CO2 Concentration (vol%) Primary Loop Inlet CO2 Concentration (vol%) -Polishing Loop Exit CO2 Concentration (ppm) — Polishing Loop Inlet CO2 Concentration (ppm)

Economic Benefit

	RC B31B.95	UK IDEA Dual Loop CO ₂ Capture Process Applied to NGCC	
Combustion Turbine Power, MWe	477	471	The UKy Process operates GT at high backpressure to eliminate the flue gas boost fan
Steam Turbine Power, MWe	212	220.7	Extra 5.34 MWe from lower steam extraction to the primary loop @1020 Btu/lb CO ₂ Captured, and extra steam produced from high thermal energy

CO ₂ Capture/Romval Auxiliaries, KWe	14400	6500	Less BOP from elimination of DCC and associated cooling duty, as well as the elimination of boost fan
CO ₂ Compression, kWe	18900	17090	CO ₂ produced from electro-regenerator will be purifized and compressed separately
Balance of the Plant, kWe	16042	16372	Assume same
Electrochemical Regenerator, kWe	N/A	32301	Calculated based on CO_2 duty and electrolyzer efficiency
CO ₂ Purification and Compression at Electro- generator Outlet, kWe	N/A	2907	Esimtaed for separating CO_2 (70%) and O_2 using 9% of Electrochemical Regeneration Power
H ₂ Dehydronation and Compression, kWe	N/A	1615	Esimtaed using 5% of Electrochemical Regeneration Power
Net Power, MWe	640	615	
NGCC Plant Cost, in 1000\$	610070	610070	Same base plant
CCS Island Cost, in 1000\$	495733	311915	Reduction from UKy CCS process features
subtotal	1105803	921985	
Captial Cost per net kW	1729	1499	Total captial divided by the net power output, a 13.3% reduction
CO ₂ Captured, kg/hr	223718	248073	10.8% increase
Hydrogen Produced, kg/hr	N/A	502	0.69 mole H_2 /mole CO_2 based on the electro-regenerator efficiency
CO ₂ Captured from Air, tonne/hr	N/A	1.96	99.8% capture efficieny is equivilant at 82 ppm CO_2 from NGCC
Natural Gas Cost, in 1000\$	152160	152160	Same generating unit
Annual Operating Cost, in 1000\$	27088	27088	Assume same for simplification
Credit from Hydrogen Sale, in 1000\$	N/A	29913	H_2 sale price @ \$8/kg for water eletrolysis grade and 85% capacity
Credit from CO ₂ Negative Emission, in 1000\$	N/A	1459	CO ₂ price @ \$100/tonne and 85% capacity
Subtotal of O&M Cost. Annually	179248	147876	a 17.5% reduction

Preliminary TEA

Effect of H₂ Sales Price

Cost of CO_2 Capture (\$/tonne CO_2)

\$45.3/tonne \$42.4/tonne \$39.5/tonne \$36.5/tonne \$33.6/tonne 25% Reduction from 2022 B31B.97

Cost of CO₂ Avoided (\$/tonne CO₂)

\$51.4/tonne \$50.6/tonne \$47.0/tonne \$39.9/tonne \$43.5/tonne 27 % Reduction from 2022 B31B.97

Acknowledgements

Mariah Young and Ron Munson, US DOE NETL

The work presented is funded primarily by US

DOE NETL under cooperative agreement DE-

Corporation is also gratefully acknowledged.

