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Introduction

* Marine Carbon Dioxide Removal (MCDR) Is defined as the indirect removal
of CO, from the atmosphere “via an enhancement of the downward air-sea
flux of CO, from the atmosphere to the surface ocean” [1].

* The surface of the ocean Is in a constant exchange of CO, with the
atmosphere and represents the largest exchange of CO, with the
atmosphere compared to any other reservoir. The ocean carbon cycle can
be seen below.
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Most free hydrogen ions (H*) react with
carbonate already in the water to form more
bicarbonate.

_______ Since pH is based on the concentration of
Hr, the leftover H* ions that don't react
drive down seawater pH.
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CO, reacts with water to
form carbonic acid, which
quickly reacts into more
stable bicarbonate and H*.

Increased CO, absorption into the water and H* generation

also means carbonate is depleted in the formation of
bicarbonate, meaning that calcifying organisms have less
carbonate available to them and are in relatively more acidic
water, both of which can make it hard to build calcium
structures like shells.

TEA Methods

» Cost and performance estimates for three electrochemical mCDR
technologies are presented. The reported costs are in May 2023 dollars.

Technology mCDR Approach Membrane Process pH Shift Capture Rate CO, Product

Bipolar Membrane Electrodialysis Acidic 63%
BPMED '

Electrochemical ( ) Basic 63%

mCDR Engineeri CO, (g)

ngineering Electrolytic Cation Exchange o
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Membrane (CEM)

AM for mCDR, E for electrochemical engineering approach, B for bipolar membrane electrodialysis [BPMED] and C for
electrolytic cation exchange membrane [CEM]), and pH shift (1 for acidic, 2 for basic), respectively.

* The scale Is based on an expected CO, capture rate of an mCDR facility co-
located with an average sized desalination plant in the U.S.

* The estimating models are based on a U.S. Florida Atlantic Coast location,
and the labor cost was scaled from a Midwest Gulf Coast location.

Performance Summary MEB1 MEB2 MEC1
Inlet DIC (CO,e), umol/kg (ppmw) 2074 2074 2074
(126) (126) (126)
CO, capture rate, % 63 63 62
CO, product flow rate (pipeline quality), tonne/yr 13,000 13,000 13,000
H, product flow rate, tonne/yr 1,481
Total auxiliary load, kWe 11,994 16,455 71,754
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LCA Methods

* Boundary: Cradle-to-Gate

* Functional unit: 1 kg of CO2
captured

* Modeling platform: openLCA v2.1.1

* Impact assessment: Traci 2.1 (ARG
100-year time horizon)

» Life cycle inventory: TEA material -
and energy flows
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GWP impacts of standalone and co-located marine CDR facilities. Sensitivity analysis for different electricity sources scenarios.

Conclusion

The preliminary TEA indicates that an LCOC > $1,000/tonne CO,, can be
expected for electrochemical mMCDR technologies.

The analysis of environmental impacts highlighted that under certain
conditions (renewable electricity source) electrochemical mMCDR technologies
can be net negative.

These results are preliminary, based on limited avarIabrIrty of transparent data
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