

2nd Generation Non-Aqueous Solvents (GEN2NAS) for CO₂ Capture from Natural Gas Combined Cycle Plants Moumita Bhattacharya*, Daniel Mogollon, Lucas Cody, Katy Jessop, Jacob Nelson, Colin Tart, Jak Tanthana, Paul Mobley, Vijay Gupta, Marty Lail

- at NGCC conditions
- >97% CO₂ capture efficiency in the Lab Scale Gas Adsorption System (LsGAS)
- the Bench Scale Gas Adsorption System (BsGAS)
- from preliminary Techno economic Analysis (TEA)

Technology Advancement & Commercialization Division, RTI International, Research Triangle Park, NC

Techno-Economic Analysis (TEA)

> The NETL's baseline rev. 4a issued on September 2019 used for cost comparison > Cost savings comes from the reduced CAPEX from using the PIP and RPB > GEN2NAS shows 41-44% reduction in the cost of capture, compared to DOE's baseline

	B31B.97 Sep 2019	B31B.97 Oct 2022	B31B.97-RTI NAS Oct 2022	GEN2NAS w/PIP	GEN2NAS w/RPB
		CA	APEX		
ΓPC),	\$1,281	\$1,117	\$1,006	\$907	\$880
apital)0	\$1,701	\$1,483	\$1,368	\$1,238	\$1,203
	O	PEX, MM/yr (100%	Capacity Factor Basis)		
Cost	\$41.3	\$36.4	\$31.6	\$28.9	\$28.1
ing el	\$31.9	\$23.5	\$21.4	\$23.1	\$22.3
	\$179.0	\$179.0	\$179.0	\$179.0	\$179.0
	\$252.1	\$239.0	\$232.1	\$231.0	\$229.5
		Plan	t Output		
out,	646	637	635	635	635
	5,658,960	5,580,120	5,565,535	5,565,535	5,565,535
	C	ommon Factors Us	ed for COE Calculation		
ate	0.0707	0.0707	0.0707	0.0707	0.0707
(CF)	0.85	0.85	0.85	0.85	0.85
CO ₂ Wh	70.9	66.1	63.2	60.9	60.1
CO ₂ Wh	74.3	69.9	66.9	64.7	63.9
		CO ₂	Capture		
duct, c)	223.78	241.18	241.08	241.08	241.08
tured	90.0%	97.0%	97.0%	97.0%	97.0%
tured	79.6	60.2	52.3	46.5	<u>44.3</u>
tured S&M	89.6	70.2	62.3	56.5	54.3
		COE Breakdow	n (millions/kWh)		
	25.0	22.1	20.4	18.5	18.0
	8.6	7.7	6.7	6.1	5.9
1	5.6	4.2	3.9	4.2	4.0
	31.6	32.1	32.2	32.2	32.2
	3.5	3.8	3.8	3.8	3.8
	74.3	69.9	66.9	64.7	63.9
		Refere	nce Plant		
CO ₂ Wh	43.30	43.30	43.30	43.30	43.30
kS	10.0	10.0	10.0	10.0	10.0

Thermal and Oxidative Degradation of GEN2NAS

 \succ The formulation is stable at 120 °C for 6 weeks under ambient CO₂ pressure, as analyzed by GC and NMR spectroscopy

> Formation of aldehyde derivative of the amine, along with some other oxidized derivatives are degradation products in the presence of air

>The effect of NOx on the formulation is currently being investigated

Ongoing/ Future Work

> Measurement of various physical properties of the GEN2NAS formulation

BsGAS testing with rotating packed bed absorber configuration

Determination optimal run condition

Financial support of this work is provided by DOE NETL under DE-FE0032218 and SLB for cost-share contribution *Presenting author: Moumita Bhattacharya

PNNL