Techno-Economic Screening Analysis of CO₂ Removal Through Enhanced Weathering

Sarah Leptinsky^{1, 2}; Sally Homsy¹; Hari Mantripragada^{1, 2}; Mark Woods^{1, 2}; Tim Fout¹ ¹US Department of Energy (DOE), National Energy Technology Laboratory (NETL), Pittsburgh, PA/Morgantown, WV; ²NETL support contractor, Pittsburgh, PA

According to the National Academy of Sciences and the International Panel on Climate goals; several gigatons of carbon dioxide (CO₂) will need to be removed from the atmosphere to achieve these goals [1]. Enhanced weathering is one of the emerging technologies that can aid in the direct removal of CO₂ from the atmosphere. This poster presents NETL's active work on the techno-economic analysis (TEA) of enhanced weathering.

What is Enhanced Weathering?

"Weathering" is the natural breakdown of alkaline rocks in the presence of rainwater, temperature changes, and/or living organisms. Weathered rocks contain silicate, hydroxide, and carbonate minerals that react with CO₂ during this process to produce aqueous bicarbonate ions.

> $M(OH)_2 + 2CO_2 \rightarrow M^{2+} + 2HCO_3^{--}$ $MSiO_3 + 2CO_2 + H_2O \rightarrow M^{2+} + SiO_2 + 2HCO_3^ MCO_3 + H_2O + CO_2 \rightarrow M^{2+} + 2HCO_3^{--}$

where *M* is typically Ca or Mg

The removed atmospheric CO_2 in the form of aqueous bicarbonate ions is eventually transported to the oceans where it can remain in solution for >100,000 years. Enhanced weathering accelerates this process by mining and crushing alkaline rocks to increase the exposed surface area. The crushed rocks can be spread across coastal regions, tropical areas, and agricultural fields where pH, temperature, and water exposure can enhance weathering rates.

TEA Design Basis

This study assesses enhanced rock weathering (ERW). All cases are assessed under ISO conditions. Case 1 uses igneous rock—specifically, dunite and basalt. Case 2 uses industrial waste—specifically, cement kiln dust and biomass ash. For all cases, a base case is developed based on the average parameters, and sensitivities are performed on these parameters to account for the different materials or scenarios. Financial assumptions are in line with already released direct air capture (DAC) case studies [2, 3].

Enhanc	ed Rock Weathering (ERW)		
Purchased Crushing and Rock/Waste Milling	Transportation Appli	cation Measurer	
Enhand	Enhanced Rock Weathering (ERW) Crushing and Milling Transportation Application Measurer Enhanced weathering base cases Case 1: Case 2: Waste Material nt, tonne/yr 250,000 144,000 (18,000/plan on e area, m²/kg 1.69 2 energy, kWh/tonne 57 - tential, kg CO2/tonne 800 600 e, mol/m²/s 1x10 ⁻¹⁰ 1x10 ⁻⁹ age, kg/m² 21 21		
	Case 1: Igneous Rock	Case 2: Waste Material	
Material amount, tonne/yr	250,000	144,000 (18,000/plan	
Rock size, micron	20	-	
Specific surface area, m ² /kg	1.69	2	
Comminution energy, kWh/tonne	57	-	
Weathering potential, kg CO ₂ /tonne	800	600	
Weathering rate, mol/m²/s	1×10 ⁻¹⁰	1x10-9	
Material coverage, kg/m ²	21	21	
Average farm, hectares	153	153	
Material transport, miles	250	250	
Material cost, \$/tonne	25	0	
Transport cost, \$/tonne	35	35	
Material application cost, \$/tonne	6	6	
Purchased power, \$/MWh	67	67	
MVR, \$/hectare/year	150	150	

Disclaimer: This poster was funded by the United States Department of Energy, National Ener information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any agency thereof. The views and opinions of authors expressed is closed, or represents that its use would not infringe privately owned rights. Reference herein to any agency thereof. The views and opinions of authors expressed is closed, or represents that its use would not infringe privately owned rights. Reference herein to any agency thereof. The views and opinions of authors expressed is closed, or represents that its use would not infringe privately owned rights. Reference herein to any agency thereof. herein do not necessarily state or reflect those of the United States Government or any agency thereof. References: [1]"Carbon Removal." World Resources Institute. https://www.wri.org/initiatives/carbon-removal (accessed July 20, 2023). [2] J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, A. Kilstofte, M. Sturdivan and M. Steutermann "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, A. Zoelle, "Direct Air Capture Case Studies: Solvent System," National Energy Technology Laboratory, Pittsburgh, PA, July 8, 2022. [3] T. Fout, J. Valentine, "A, July 8, 2022. [3] T. Fout, J. Valentine, "A, July 8, 2022. [3] T. Fout, J. Valentine, "A, July 8, 2022. [3] Laboratory, Pittsburgh, PA, May 15, 2020.

MVR = Measurement, verification, and reporting

Background

Results Analysis

The amount of CO_2 captured in the base cases is determined by either the The most impactful parameters on the LCOC of ERW is the weathering rock available from a mine (Case 1) or the waste material available from potential and weathering rate. The weathering rate is highly dependent on the pH and temperature conditions of the application site, and the multiple plants in the vicinity (Case 2). To better compare these two cases, weathering potential is dependent on the composition of the material. an additional case was developed for each scenario to capture 100,000 tonnes of CO₂/year, labeled as "comparison." Together, these parameters determine the efficiency of the capture system and, thus, impact the LCOC.

oariso

0.1

Enhanced weathering performance and cost results

	Igneo	us Rock	Waste Material		
	Case 1	Comparison	Case 2	Comparise	
CO ₂ captured, tonne/yr	138,192	100,000	86,400	100,000	
Initial rock fill, tonne	250,000	180,908	144,000	167,000	
Rock makeup, tonne/yr	172,740	125,000	144,000	167,000	
Auxiliary load, MWh/yr	14,148	10,238	-	-	
Land needed, hectares	1,190	861	686	794	
# of farms	8	6	5	6	
Total plant cost, \$/1,000	26,001	21,129	13,318	16,331	
Levelized cost of capture, \$/tonne of CO ₂	136	146	119	117	

When both cases are adjusted to capture 100,000 tonnes of CO_2 /year, the impact on the economy of scale is observed. For the industrial waste case, it is assumed that the same plants in the area can accommodate the material to achieve 100,000 tonnes of CO_2 /year, and additional plants in the area do not need to be considered. The uncertainty of the capital cost estimates is +/-50 percent to be consistent with the AACE Class 5 cost estimates. Variable cost (material cost, application cost, material transport cost, and MVR) is the largest contributor to the levelized cost of capture (LCOC) for both cases.

Enhanced weathering LCOC breakdown

Research & Innovation Center

Sensitivity Analysis

ERW with industrial waste (Case 2) LCOC ($\frac{1}{2}$) sensitivity on weathering rate and weathering potential

	Weathering rate [mol·m ⁻² s ⁻¹]					
	(a)	1.E-07	1.E-08	1.E-09	1.E-10	1.E-11
	200	358	358	358	534	3,503
	300	239	239	239	356	2,335
a	400	179	179	179	267	1,751
e]	500	143	143	143	214	1,401
ote nn	600	119	119	119	178	1,168
d b ∕to	700	102	102	102	153	1,001
	800	90	90	90	133	876
d O O	900	80	80	80	119	778
ikç [kç	1000	72	72	72	107	701
We	1100	65	65	65	97	637
	1,200	60	60	60	89	584
	1,300					

ERW with igneous rock (Case 1) LCOC (\$/tonne of CO₂) sensitivity on weathering rate and weathering potential

		Weathering rate [mol·m ⁻² s ⁻¹]						
	(a)	1.E-08	1.E-09	1.E-10	1.E-11	1.E-12		
	200							
	300	316	316	362	1,673	14,759		
5	400	237	237	272	1,255	11,069		
e	500	189	189	217	1,004	8,855		
	600	158	158	181	837	7,380		
	700	135	135	155	717	6,325		
	800	118	118	136	627	5,535		
	900	105	105	121	558	4,920		
	1000	95	95	109	502	4,428		
	1100	86	86	99	456	4,025		
	1200	79	79	91	418	3,690		
	1,300	73	73	84	386	3,406		

Conclusions

The weathering rate is highly influenced by ambient conditions and can, therefore, be slower or faster depending on location or material composition, thus highlighting the importance of location and material selection. ERW has the potential to offer an economical approach to CO_2 removal. Future work will incorporate more specific design parameters related to technology, materials, and location.

Science & Engineering To Power Our Future