Using MeshGraphNets to Predict Geologic Behaviors of the Illinois Basin – Decatur Project (IBDP)

Hyoungkeun Kim^{1,2}; Mina Rezkalla^{1,2}; Alex Sun^{1,2}; Dirk T. VanEssendelft³, Chung Yan Shih⁴, Guoxiang Liu⁴, Hema Siriwardane³ ¹National Energy Technology Laboratory, 1450 SW Queen Ave, Albany, OR 97321, USA; ²NETL Support Contractor, ³National Energy Technology Laboratory 3610 Collins Ferry Road, Morgantown, WV 26505, USA; ⁴National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA

ABSTRACT

Reservoir simulation plays a critical role in the design, permitting, and long-term management of geological carbon storage, providing decision support needed for the monitoring, verification, and accounting processes. However, solving the multiphase, multicomponent flow and transport equations governing CO₂ plume migration is computationally demanding, even on highperformance computing clusters. The wafer-scale engine (WSE), packing nearly a million compute cores onto a single processor, represents a revolutionary technology for scientific computing for real-time support. In this work, we developed a two-phase CO₂brine solver for running on WSE and demonstrated it on both synthetic and real-case studies. This poster presents preliminary results from validation and field data testing.

OBJECTIVES

- **Develop a two-phase compressible CO₂-brine solver for** running on WSE
- Demonstrate numerical accuracy and scalability of the WSEbased solver on synthetic problems
- Demonstrate the WSE-based solver on well data from the Illinois Basin - Decatur Project (IBDP)

TWO-PHASE MODEL

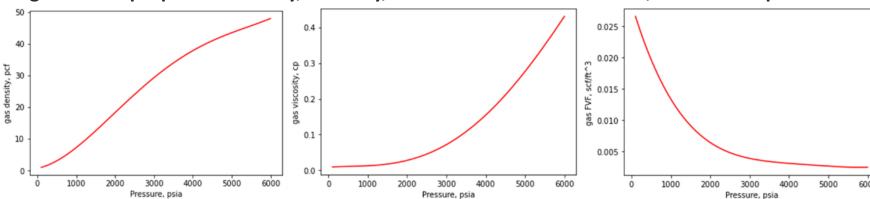
The PDEs (partial differential equations) for fluid flow are developed by combining three equations: continuity equation, Darcy's flow equation and the fluid equation of state. The brine phase flow equation is given $\partial (\varphi,$ by

$$\frac{\rho \ \rho_w \ S_w)}{\partial t} = \nabla \left(\frac{\rho_w}{\mu_w} \ k \ k_{rw} \left(\nabla \mathbf{p}_w + \gamma_w \nabla \mathbf{z} \right) \right) + q_w$$

The CO2 (gas) phase flow equation is given by

$$\frac{\partial \left(\varphi \left(\rho_{g} S_{g} + \rho_{w} S_{w} R_{sw}\right)\right)}{\partial t} = -\nabla \left(\left(\frac{\rho_{g}}{\mu_{g}} k k_{rg} + \frac{\rho_{w}}{\mu_{w}} k k_{rw} R_{sw}\right) \left(\nabla p_{g} + \gamma_{g} \nabla z\right)\right) + q_{g}$$

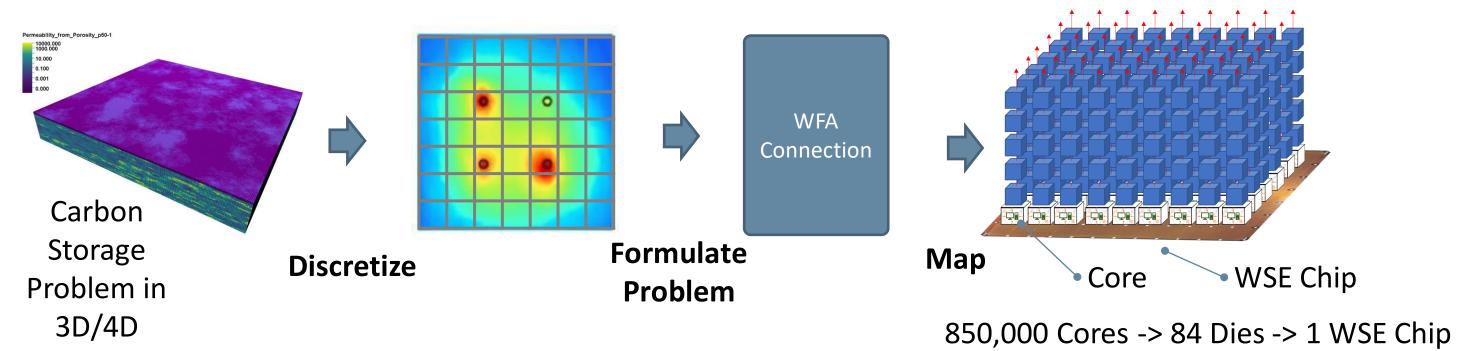
The overall flow equation is obtained by multiplying the brine flow equation by $(R_sw B_w/B_g)$ and adding the results to the CO_2 flow equation dx

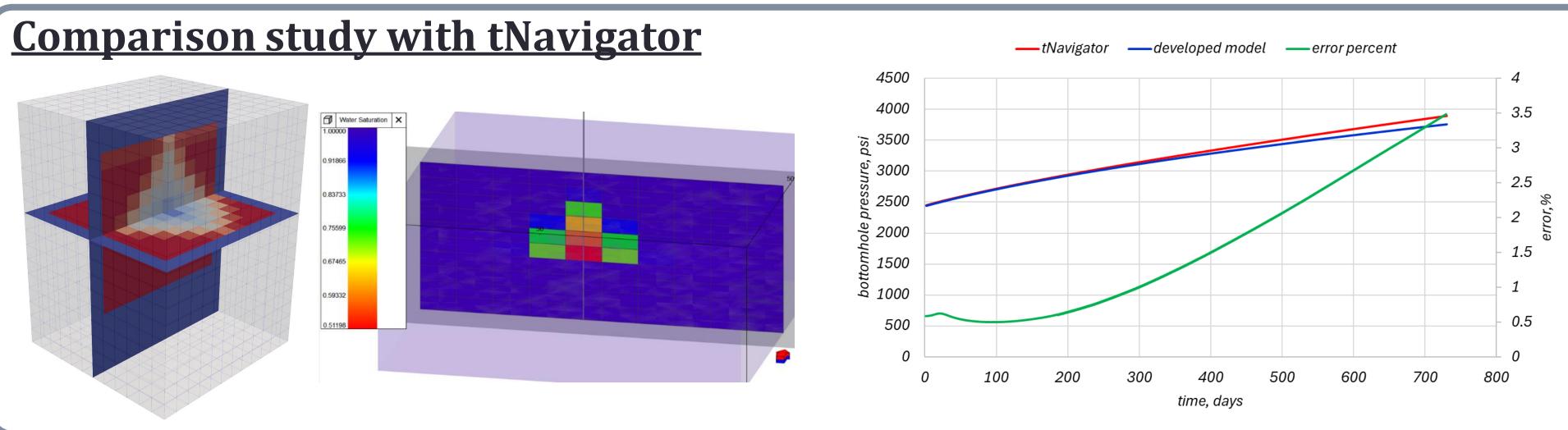

$$D_n \frac{dx_n}{dt} = T_n x^{n+1} + G_n + Q_n$$

PVT – BRINE & CO_2

- The PVT (Pressure Volume Temperature) properties of CO₂ are estimated using the Peng-Robinson (PR) Equation of State (EOS).
- The relative permeability calculations are performed using Corey's model.

Kr w — Krg





METHODS AND RESULTS

EXECUTIVE SUMMARY As the first step in developing the WFA (Wafer Field Application) code of two-phase model toward the simulation of CO₂-injection, the team developed the preliminary WFA code of two-phase flow model with CO₂ Brine PVT approximation. The WFA code is compared to t-Navigator for benchmark test and tested on the Neocortex Sdf WSE toward the simulation of IBDP experiment

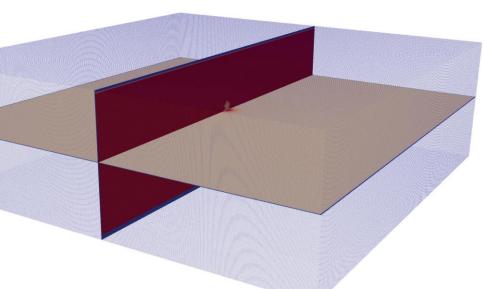
Scalability study on Neocortex Sdf WSE 1000 days injection

Nx	Ny	Nz	Total # cells	cs-2 time
100	100	124	1.24 M	~1.38 sec
200	200	124	4.96 M	~ 1.54 sec
300	300	124	~ 11.2 M	~ 1.65 sec
400	400	124	~ 19.8 M	~ 1.79 sec

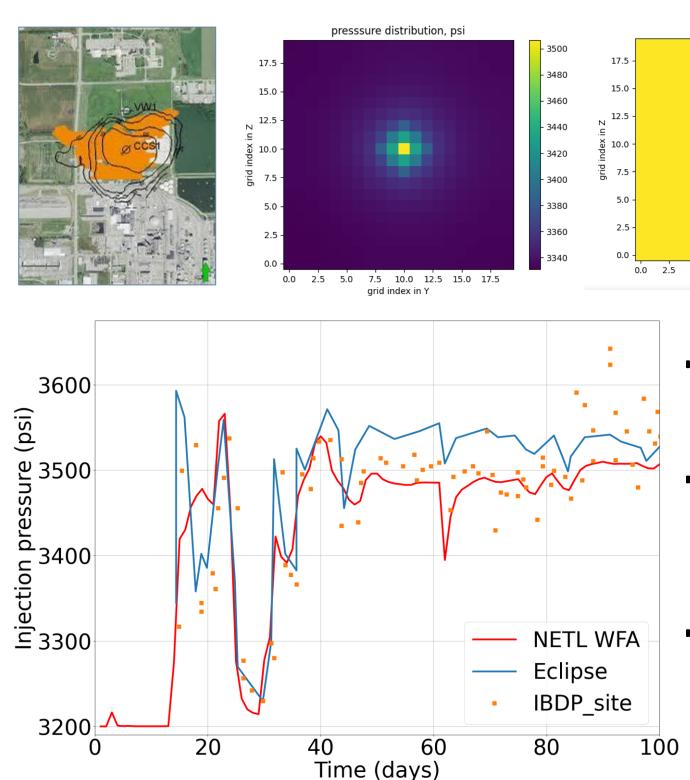
BERKELEY LAB

LOS Alamos

PennState



Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsur


Mesh size of (400x400x124)

Pacific Northwest NATIONAL LABORATORY

IBDP EXP COMPARISON

REMARKS

- Developed proof-of-concept WFA code of twowith PVT of CO₂ and brine
- **Benchmarked results against t-Navigator outco**
- **Tested scalability on Neocortex Sdf WSE**
- Tested preliminary case based on IBDP CO₂ sto

FUTURE WORK

- **Development of pre-conditioner for linear solve**
- Benchmark study using t-Navigator on Joule3 C
- Validation study based on legacy IBDP experime

REFERENCE

- Petroleum reservoir simulation basic concepts, Khalid Aziz, 2005
- Redlich, Otto; Kwong, J. N. S. (1949). "On The Thermodynamics of Solutions". Che doi:10.1021/cr60137a013. PMID 18125401.
- Kamil Rocki, Dirk Van Essendelfty, Ilya Sharapov, Robert Schreiber, Michael Morri Andrey Portnoy, Jean Francois Dietikeryz, Madhava Syamlaly and Michael James Computation on a Wafer-Scale Processor. arXiv:2010.03660v1 [cs.DC] 7 Oct 2020
- Area of Review and Corrective Action Plan for ADM CCS #2 Oct2016, IL-115-6A-0

DISCLAIMER

This project was funded by the United States Department of Energy, National Energy Te through a site support contract. Neither the United States Government nor any agency employees, nor the support contractor, nor any of their employees, makes any warrant assumes any legal liability or responsibility for the accuracy, completeness, or usefulnes apparatus, product, or process disclosed, or represents that its use would not infringe Reference herein to any specific commercial product, process, or service by trade name or otherwise does not necessarily constitute or imply its endorsement, recommendation States Government or any agency thereof. The views and opinions of authors expressed state or reflect those of the United States Government or any agency thereof.

Bureau of Economic Geology

ce Applications
water saturation
- 0.9 - 0.8 - 0.7 - 0.6 - 0.5
grid index in Y
 100 days CO₂ injection data
 Uniform permeability and porosity
 Converting stand-alone version into WSE/WFA
-phase model
omes
rage dataset
ver on WSE/WFA CPUs/GPUs
ent/simulation
em. Rev. 44 (1): 233–244.
ison, Vladimir Kibardin, : Fast Stencil-Code 0
0001, Attachment B
echnology Laboratory, in part, y thereof, nor any of their ty, express or implied, or ss of any information, privately owned rights. e, trademark, manufacturer, on, or favoring by the United d herein do not necessarily
ndia tional poratories