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*  Multi-step rollout helps stabilize
prediction over time

* Features of the data:

* Static Features: Porosity,
Permeability, Node Location
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* Calculated Features: Cell
Volume (node-centric);
Distance Between Nodes (Ax,
Ay, Az); Linear Distance
Between Nodes (vector
magnitude)
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This project was funded by the United States Department of Energy, National
Energy Technology Laboratory, in part, through a site support contract. Neither the
United States Government nor any agency thereof, nor any of their employees, nor
the support contractor, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
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* Dynamic Features: Pressure or
Saturation, Injection Rate
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* Assigned Features: Node Types
(injector, interior, edge, face,
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