
Science-informed Machine Learning to Accelerate Real Time (SMART) Decisions in Subsurface Applications

Motivation: We develop an integrated deep learning (DL) models approach for fast and accurate identification of 
microseismic (MS) source locations for MS data observed from geologic CO2 storage project at the Illinois Decatur 
Basin Project (IBDP)[1] (Fig. 1). 

IBDP Site: Geophones recording array for continuous passive MS signals before, during, and after CO2 injection 
in deep reservoir formation. We analyze MS activity over a short time period (Feb. 27 - Mar. 12, 2012) with a total 
of 612 located events in the catalog.  We use three channel time-series data from the lowest geophone. 

Conclusions
• We combined WGAN-GP and PhaseNet to produce quality P & S 

phase arrivals for event samples. Data augmentation boosts 
MHCNN task optimization. 

• Our integrated DL model approach achieves rapid and accurate 
source location and  fault fracture identification. 

• Source location of new detections proposes an extension of the 
main fault moving deeper in the reservoir.
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Event Detection (Figure 2)

• CNN model with time-frequency feature extraction capability for fast 
and accurate MS event detection.

• Obtain new accurate MS event detections  for reservoir analysis.

Phase-pick (Figure 3)

• Integrate a PhaseNet [4] model  optimized for MS events phase 
picking.

• Obtain high precision  MS waveform phase arrival time information.

Source Location (Figure 5-7)

• CNN architecture with multiple input modality feature extraction 
capabilities for high fidelity MS event source location identification.

• Implement trained model on field data to identify discrete fractures.

Data Augmentation (Figure 4)

• Train a multi-channel WGAN-GP [3] model to emulate field MS 
waveform characteristics for a given event source locations.

• Generate new waveform for a variety of locations in the region

Figure 1. IBDP 
site events and 

Cluster #2 
overview. [2]
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Figure 2.  Cumulative detection of MS events for traditional and 
DL algorithms. Our DL Models achieve  better precision.

Figure 3. PhaseNet phase 
picking  sample.

Figure 4. Seismogram generative model using 
multiple Wasserstein generative adversarial 
network with gradient penalty (WGAN-GP). 
Waveform modulations and phase arrivals 

assimilate field data well. Figure 7. IBDP discrete fracture 
projection of the original catalog and 
new detections. Our models estimate 

both fault planes connecting at the 
lowermost section.

Figure 6. MHCNN model performance of source 
location coordinates for 1,211 samples. 
Predictions accuracy increased, highly 

coinciding with true values after augmentation.

Figure 5.  Multi-head CNN (MHCNN) architecture for microseismic 
source location with separate feature extraction pipelines and their 

input modality. 
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