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Results

Conclusion

Figure 1. IBDP Bottom Hole Pressure 

Figure 2. TAMU Pressure History Matching 

Figure 3: CO2 saturation and pressure increase predicted by the Texas A&M model for scenarios with
a base (left) and optimized (middle) injection rate. The difference between the two scenarios is
shown on the right.

Figure 4:  3D representations of  IBDP CO2 Plume

Figure 5: Workflow of SMART Modules

Summary
• Objective: Provide advanced, user-friendly tools for real-time

decision support in CO2 injection management.

• Importance: Addresses the critical need for accurate simulation and
optimization of reservoir conditions for CO2 sequestration to mitigate
climate change.

• Technology:

• Interface: Dynamic, browser based, built with Python and Plotly Dash.

• Accessibility: Allows users to interact with reservoir simulation tools
without needing to install software.

• Capabilities:

• Integration: Combines forward models and history matching
algorithms.

• Data handling: Users can upload monitoring data, choose history
matching algorithm, and run simulations.

• Models:

• History Matching (HM): Uses the TAMU’s history matching machine
learning model for the Illinois Basin Decatur Project (IBDP) dataset.

• Forecasting: Utilizes the University of Texas at Austin’s Bureau of
Economic Geology (UTBEG) model.

• Optimization: Aims to optimize storage and minimize pressure build-
up.

• Benefits:

• Real-Time adjustments: Facilitates real-time modification to
operations and monitoring strategies.

• Efficiency: Enhances the efficiency and effectiveness of CO2

sequestration projects.

Features
• Provides real-time actionable decision support to improve operation

and risk management strategies during geological
carbon sequestration operations. 

• Integrates history-matching ML models and visualizes them within the
modern-looking graphical user interface. 

• Forecasts future reservoir performance based on historical monitoring
data. 

• Optimizes storage efficiency by varying injection strategies. 
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• The RTFO module utilizes machine learning-driven history matching to accurately
constrain subsurface parameters, enhancing reservoir model precision.

• It enables the creation of optimized site operation plans despite uncertainties.
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