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Ø The study employs machine learning to 
quantify CO₂ plume extents by analyzing 
microseismic data from the Illinois Basin 
Decatur Project (IBDP).

Ø The research leverages a unique dataset 
comprising well logs, microseismic records, 
and CO₂ injection metrics to predict the 
temporal evolution of subsurface CO₂ 
saturation plumes.

Ø Machine learning can effectively predict 
plume dynamics, revealing vertical 
clustering of microseismic events, 
consistent with an invasion percolation 
model. 

Ø CO₂ plumes partially trapped within 
sandstone intervals breach localized barriers 
periodically, driven by buoyancy 
overcoming gravity and capillary forces.

Ø K-Means clustering outperformed other 
techniques, showing highest Silhouette 
Score and lowest Davies-Bouldin Index.

Summary Introduction Methodology
Ø Fossil fuel use disrupts carbon balance, necessitating CCS 

strategies.
Ø IBDP showcases CCS viability by capturing and injecting CO2 into 

Mt. Simon Sandstone, with Eau Claire Shale as cap rock.
Ø At the IBDP, natural fractures and baffles impact CO₂ sequestration.
Ø Baffles Impede vertical CO₂ movement, causing lateral spreading in 

high permeability zones and Fractures enhance storage via 
increasing the contact area for processes like dissolution and 
mineral trapping.

Ø Within the interval from 5,371.5 feet to 7,198 feet measured depth 
of the Mount Simon Sandstone, 5,875 baffles were identified 

Ø Some previous interpretations of microseismic events at the (IBDP) 
site showing events predominately in the Mount Simon while other 
interpretations show events concentrated in the basement.

Ø Microseismic monitoring tracks CO₂ injection effects on stress fields 
and brittle failure in fractures aids in understanding CO₂ plume 
dynamics and ensuring storage site integrity.

Ø Machine learning, especially unsupervised learning techniques 
such as clustering uncover patterns and features within seismic 
data that traditional methods might miss.

Ø Figure 4 illustrates the K-Means clustering of 
microseismic events on the 2D plane of depth 
difference and horizontal distance from the injection 
point, highlighting the horizontal and vertical 
extension of the CO₂ plume.

Ø Clusters 0, 1, and 2 with lower event densities 
occurred early (Dec 2011 - Mar 2012), indicating 
initial horizontal CO₂ spread due to baffle 
confinement.

Ø From mid-2012 to post-injection (Nov 2014 - Feb 
2018), CO₂ accumulated around the injection point 
after initial breakthroughs.

Results

Ø The IBDP dataset included 10,123 microseismic events from Nov 
2011 to Dec 2014, monitored by geophones in the injection well 
CCS#1 and monitoring well VW#1.

Ø K-Means and DBSCAN clustering of microseismic events revealed 
CO₂ plume dynamics, identifying vertical and horizontal 
distributions influenced by geological features like baffles and 
barriers.

Ø Initial clusters (Dec 2011 - Mar 2012) showed lateral CO₂ spread 
up to 9000 ft due to baffle confinement, followed by upward 
migration from mid-2012 as pressure increased.

Ø From mid-2012 to Feb 2018, microseismic events concentrated 
near the injection point, showing cyclical CO₂ migration and 
accumulation patterns.

Ø K-Means clustering aligned well with physical data from FMI and 
PNL logs, outperforming DBSCAN in providing actionable 
insights, enhancing subsurface modeling and CO₂ sequestration 
strategies.

Conclusions

Figure 1 Baffles intensity log using well logs.

Figure 3 Left . Map of microsesimic events extension from Dec 2011-Feb 2018.  Right Vertical and lateral 
expansion of microseismic  events during CO2 injection and post injection time (Dec 2011-Feb 2018)

Ø An opensource tool was developed to visualize and analyze the 
microseismic data using both K-Means and DBSCAN clustering 
techniques. 

Ø This tool, accessible through an online dashboard, utilized the 
Python programming language and packages such as NumPy, and 
Pandas, offering data loading and processing functionalities, and 
is available on    https://cz63dzvzquchsikhdpugsq.streamlit.app/. 

Ø The dashboard accounts for varying time spans to detected CO2 
plume pressure dynamics both laterally and vertically from the 
injection point. 

Ø Additionally, the dashboard offers the option to optimize the K-
Means and DBSCAN clustering techniques. Once the parameters 
are set, the workflow is applied to both data sets provided "SLB 
Data" and "Relocated Data,".

Figure 4  K-Means clustering showing horizontal and vertical extension of five clusters

Figure 5 clustering in 2D space of Time and Horizontal distance to injection point.

Ø The optimal number of clusters for each subset was determined 
using “elbow curves” for both WCSS and Total Variation, and 
confirmed by the highest Silhouette Score and the lowest 
Davies-Bouldin Index 

Number of 
Clusters

Silhouette 
Score 

Davies-Bouldin 
Index

3 0.623 0.464

5 0.651 0.355

Figure 2. (a) Optimal K-Means clusters by WCSS; (b) by Total Variation for 2D subset 

Ø Figure 3 Left illustrates the Map of microsesimic events 
extension from Dec 2011-Feb 2018. At early time of injection 
extending away from the injection point to Southeast and later 
concentrating around the East of injection point.

Ø Figure 3 right shows these events spreading both vertically 
(ranging from -500 ft to 1100 ft) and horizontally (extending up 
to 9000 ft) away from the injection point, suggesting the CO₂ 
plume's extension and interaction with various geological layers, 
including the Mt. Simon sandstone and the Precambrian 
basement. 

Ø Initially, the CO₂ plume spread laterally away from the injection 
point, accumulating around 9000 ft away (December 2011-
February 2012). 

Ø It then moved back toward the injection point during March 
2012 and concentrated around the injection point for the rest of 
the injection time and post-injection period until February 2018. 

Ø Post-injection events mainly occurred between 2600 to 3900 ft 
away from the injection point, extending up to lower Mount 
Simon C.

Figure 6 K-Means clustering showing horizontal and vertical extension of five clusters

Ø Figure 5 shows, Initially (C0), microseismic events 
spread up to 9000 feet from the injection point but 
later concentrated closer (C1, C2, C3). 

Ø Post-injection activities primarily occurred between 
2600 and 3900 feet away, with fewer events near the 
injection point (C4). 

Ø This pattern suggests that high-density baffles and 
barriers near the injection point closed after injection 
stopped and pressure decreased below the closure 
pressure.

Ø Figure 6 reveals vertical CO₂ movement throughout the 
injection and post-injection periods. 

Ø Being lighter than formation water, CO₂ accumulated in 
highly saturated sandstone layers, overcame gravity 
and capillary forces, and breached barriers to migrate 
vertically. 

Ø Most microseismic events were concentrated in Mt. 
Simon A upper and Mt. Simon B, with fewer events in 
Mt. Simon A lower and some extending to Mt. Simon C 
and the Precambrian.

Ø Physical interpretation of clusters 
aligns with PNL logging 
observations and FMI log data on 
baffle intensity, supporting five 
clusters as the optimal number 

https://cz63dzvzquchsikhdpugsq.streamlit.app/

