

Novel Next-Generation Sorbent System for Post-Combustion CO₂ Capture

PROJECT OBJECTIVE

- To develop a transformational MOFbased (metal organic framework) CO₂ sorbent system that can:
- Capture more than 90% of the CO₂ emissions from a coal power plant
- Recover CO₂ at 95% purity
- Reduce the cost of capture to ≤ \$30/tonne CO₂ while reducing the cost of electricity by ≥ 30% relative to amine-based capture systems

TEAM MEMBERS

- TDA Research
- University of Alberta
- _ . . . _

GHSV = 1,000 hr⁻¹; Counter-Flow Regen with N₂

100 ppm NOx, 10 ppm SO₂

T = 30°C

Dr. Ashok Rao

Wyoming Integrated Test Center

APPROACH

Budget Period 1

- Demonstrate sorbent performance
- Assess impact of flue gas contaminants (SO₂, NO_x, and HCl)
- Develop adsorption cycle sequence
- Develop preliminary TEA

Budget Period 2

- Scale-up sorbent production
- Complete lifetime tests
- Optimize cycle and update TEA
 Budget Period 3
- Complete field tests (6 months)
- High-fidelity TEA and EH&SA

TDA's MOF Adsorbent

Pelletized MOF Sorbent

Heat of Adsorption

Amount Adsorbed (mmol/g)

Preliminary TEA

DOE Rev 4 Basis

Capture Technology	Sorbent Only	Amine	No Capture
Case Studies	Case 1	B12B	B12A
Basis for Cost Estimates (Year)	2018	2018	2018
Net power, MW	650	650	650
Capacity factor (CF), %	85	85	85
Total plant cost (TPC), \$	2,053,929,454	2,468,373,000	1,364,033,000
Total overnight cost (TOC), \$	2,553,134,556	3,023,049,325	1,678,411,825
Total as spent capital (TASC), \$	2,946,317,278	3,488,598,921	1,937,578,752
LCOE	\$/MWh	Ś/MWh	\$/MWh

43.04

13.73

12.15

22.75

0.00

91.67

8.45

100.12

32.25

52.29

16.13

14.00

24.08

0.00

105.18 8.96

114.14

45.52

73.40

9.48

7.72

18.87

0.00

64.37

0.00

64.37

\$/tor

Fixed Bed Reactor Tests $15\% CO_2 \& 0-6\% H_2O \text{ in } N_2 \text{ at } T = 30/45/60^{\circ}C$

Ads: 1–16% CO₂ in N₂; Des: N₂; T = 28°C

- Sorbent has excellent CO₂ uptake kinetics and selectivity; product
 purity ≥ 95% has been achieved
- Sorbent has demonstrated a CO₂ working capacity ≥ of 4% wt.
- Lab-based testing with flue gas contaminants indicates stable sorbent performance in the presence of SO₂ and NO_x

Initial TEA

- CO₂ capture consumes ≤ 117 kWh/tonne (242 kWh/tonne when CO₂ compression included)
- Net power output is reduced by roughly 17.4% for a cost of CO₂ capture ≤ \$32.25/tonne
- Reducing CAPEX to \$275 MM can further reduce capture cost below \$30/tonne

Wyoming ITC Field Test Unit (2–4 scfm)

T = 30°C

TDA's field demo installation near Gillette, Wyoming is designed for continuous, all-season testing with coal-derived flue gas (local PRB coal) at flows of up to 150 scfm.

Contract: DE-FE0031734

Second States and States and

