Membrane-Based Carbon Capture System for Long-Range Marine Transportation

Project Number: DE-SC0025205

Jian James Zou, Ph.D. Zenith Purification LLC

August 8, 2024 2024 FECM / NETL Carbon Management Research Project Review Meeting

Project Overview

- Funding: DOE SBIR award \$256,500
- Project Performance Dates: 7/22/2024 4/21/2025
- Project Participants:
 - Zenith Purification LLC (prime recipient)
 - Lamar University (sub recipient)
 - The Ohio State University (consultant)
- Overall Project Objectives
 - a feasibility study & a conceptual design of an onboard carbon capture and storage system
 - a comparison of our conceptual design with alternative designs
 - a technology gap analysis and CO₂ membrane testing
 - a detailed life cycle analysis and technoeconomic analysis

Technology Background

- Long-range marine transportation released ~1 billion tonnes of CO₂ in 2018, 3% of global man-made CO₂ emissions
 - Since Jan. 2024, EU's Emissions Trading System extended to cover CO₂ emissions from all large ships (>5,000 ton) entering EU ports¹
- > This industry also released large amounts of SOx, NOx, & particulates
 - International Maritime Organization (IMO) global fuel sulfur limit requires low-sulfur fuel or exhaust gas cleaning systems (scrubbers)
 - Tier III emission standards set by IMO to reduce NOx. Selective catalytic reduction (SCR) is a proven technology to reduce NO_x
- Ship owners have incentives to cut CO₂, SOx, NOx emissions. They are willing to adopt new technologies e.g. scrubbers, SCR

Technology Background (cont.)

- > Technical challenges for carbon capture on a container ship:
 - Size (smaller size means more cargo, more revenue)
 - Weight (smaller weight, lower fuel costs)
 - Durability & reliability (harsh marine environments, constant motion)
- > Carbon capture tech can be divided into three main categories:
 - Solvents/sorbents such as amine scrubbing & pressure swing adsorption (PSA)
 - Cryogenic distillation process
 - ➤ membranes
- The proposed system combines a new generation of polymeric CO₂removal membranes and commercially available gas cleaning systems to capture 95% CO₂, reduce 99% of SO_x and 90% of NO_x emissions

Our Proposed Process

Organization Chart

6

Acknowledgement

7

This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy and Carbon Management under Award Number DE-SC0025205.

Reference

 European Union, https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
MAN B&W 8S60ME-GI engine, https://www.man-es.com/company/press-releases/press-details/2024/04/16/world-s-largest-carcarriers-ordered-with-man-energy-solutions-propulsion-package