High-Permeance Membranes for CO₂ Capture from Industrial Steel Production

<u>Lingxiang Zhu^{1,2}; Thien Tran^{1,2}; Fangming Xiang^{1,2}; Victor Kusuma^{1,2}; Cheick Dosso³; Hector Pedrozo³; Grigorios Panagakos^{1,2,3}; Neil Pergar⁴; Brenda Petrilena⁴; <u>David Hopkinson¹</u></u>

NATIONAL ENERGY TECHNOLOGY LABORATORY

This project was funded by the United States Department of Energy, National Energy Technology Laboratory, in part, through a site support contract. Neither the United States Government nor any agency thereof, nor any of their employees, nor the support contractor, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

- Project: Point Source Capture Technology
- Funding Source: NETL Point Source Capture Multiyear Research Plan (MYRP)
- Project Objective: developing a scalable thin-film composite (TFC) membrane for industrial carbon capture that has a CO_2 permeance >3,000 gas permeance unit (GPU) and CO_2/N_2 selectivity of >25. All the membrane support, gutter layer, and selective material will be optimized for scalability and performance stability (or non-aging property).
- Project Participants:

Importance of High-Permeance Membranes

Higher permeance leads to lower capture cost because fewer membrane areas are required.

Thin-Film Composite (TFC) Membranes

Selective layer: CO₂/N₂ separation Gutter layer: preventing pore penetration Porous support: mechanical reinforcement

Alex Zoelle et al., <u>Performance and Cost Sensitivities for Post-Combustion Membrane Systems</u>, 2018 NETL CO₂ Capture Technology Project Review Meeting **COE**: cost of electricity

Membrane Development Activities at NETL: Prior Accomplishments

3. Scalable thin-film coating

4. Module design, 3D printing and testing

Membrane Development Activities at NETL: 2023-2024 Accomplishments

3 samplers out of a 12m long thin-film coating; 100k magnifications under SEM

@6th meter

Membrane Separation Performance Benchmark

- NETL results are based on scalable R2R coating.
- Increasing gutter layer permeance leads to the improvement of TFC performance.
- NETL's 11,000 GPU substrate is the key to our highpermeance TFCs.

NETL Gutter Layer Membrane Exceeds Other Reports in Terms of Combined Performance and Scalability

	NETL	MTR- conventional	MTR- isoporous	Tianjin U, China	U. Melbourne, Australia
CO ₂ permeance(GPU) @ test temp (°C)	11,000 @ 22C	6,000 @ 30C	11,800 @ 30C	10,000 @ 25C	14,000 @ 35C
CO_2/N_2 selectivity	10	n/a	n/a	10	9.0
G-layer thickness (nm)	~200	90	120	125	~50
Coating method	R2R	R2R	R2R	R2R	Spin coating
Porous support	polymer w/ good solvent resistance	An engineering polymer	Isoporous block copolymer (costly & weak solvent resistance)	Polysulfone (weak solvent resistance)	Polyacrylonitrile
Solvent resistance	Good	n/a	Weak	Weak	Good
Comments on scalability	Easy to scale up at low material cost	Demonstrated at MTR's Polaris membranes	Hard to scale up due to the difficulties in forming isoporous supports at scale	Scalable but needs special machinery for dip coating of wet supports	Not scalable due to the coating method used
Reference	This work	MTR's DE-FE0031596 Project Close Out Meeting, May 31, 2024		Sep. Purif. Technol. 239 (2020) 116580	Chem. Eng. J. 462 (2023) 142087

Scaleup Fabrication of Plate-and-Frame Membrane Modules for the U. S. Steel Field Test

Illustration of a **1,000 cm²** membrane module for the U. S. Steel test: simple to increase membrane area by adding more stackings.

Membranes were stored for 50 days (1200 h) before being assembled into a module for testing.

Preparations for the Field Demonstration in 2025

Collaborate with U. S. Steel for field test using blast furnace waste gas (>20% CO₂) at U. S. Steel's Edgar Thomson Plant, Braddock, PA.

1111

Preparations for the Field Demonstration in 2025

Collaborate with U. S. Steel for field test using blast furnace waste gas (>20% CO₂) at U. S. Steel's Edgar Thomson Plant, Braddock, PA.

Summary: NETL High-Permeance TFC Membranes' **Pathway to Scale-Up and Field Demonstrations**

Acknowledgments

NATIONAL ENERGY TECHNOLOGY LABORATORY

NETL Membrane R&D

David Hopkinson Lingxiang Zhu Victor Kusuma Thien (James) Tran Fangming Xiang James Baker

NETL Engineering Team

Daniel Tomley Ryan Mesiano John DeMarino Michael Ciocco John O'Connor

Analysis Team from CCSI² Michael Matuszewski Benjamin Omell Eric Grol Glenn Lipscomb(UToledo)

CMU: CFD Simulation Grigorios Panagakos Cheick Dosso Hector Alejandro Pedrozo

U. S. Steel: Field Test Host Site Brenda Petrilena Neil Pergar

USS

NATIONAL CARBON

Idaho National Laboratory

U.S. Steel

INL: Material Synthesis

John Klaehn Josh McNally

NCCC: Field Test Host Site

Tony Wu Robert Lambrecht John Carroll John Cagle Wayne Isbell

DOE Program Managers Dan Hancu Ronald Munson Tim Fout

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NationalEnergyTechnologyLaboratory

CONTACT:

Lingxiang Zhu lingxiang.zhu@netl.doe.gov David Hopkinson (Team Lead) david.hopkinson@netl.doe.gov

