

Bench-scale Development of a Transformational Graphene Oxide-based Membrane Process for Post-combustion CO₂ Capture

Shiguang Li, Weiwei Xu, Qiaobei Dong, Howard Meyer, *GTI Energy* Miao Yu, Fan Wang, Dinesh Behera, *The State University of New York at Buffalo (UB)*

2024 FECM/NETL Carbon Management Research Project Review Meeting August 5 – 9, 2024

GTI Energy: 80-year history of turning raw technology into practical energy solutions

GTI Energy is a leading energy research and training organization

Across the entire energy value chain

World-class facility in Chicago area

CCUS is one of GTI strategic focus areas Active DOE Projects

Carbon capture

- FE0031946: 20 TPD facilitated transport membrane (FTM) for power plant application
- **FE0032466**: 3 TPD ROTA-CAP for steel plant application
- FE0032463: 3 TPD FTM for cement plant (sub to OSU)
- **FE0031598**: Bench-scale GO-based membrane
- FE0032215: Nano-confined ionic liquid membrane
- **FE0031730**: Size-sieving adsorbent (sub to UB)

Carbon conversion

- <u>FE0031909</u>: Membrane reactors for conversion of CO₂ to fuels/chemicals
- <u>FE0032246</u>: Converting CO₂ to alternative cement (sub to WashU)
- Carbon dioxide removal (CDR)
 - <u>FE0031969</u>: Trapped small amines in capsules (sub to UB)
- Carbon transport and storage
 - FE0032239: CarbonSAFE Phase II

Technology based on our work published in Science and Nature Communications

Science

h, nm

AAAS

Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation Hang Li *et al. Science* **342**, 95 (2013); DOI: 10.1126/science.1236686

x, nm

Contribution:

 Structural defects on GO flakes can be controlled as transport pathway for selective gas separations Approach to enable CO₂/N₂ separation: fill the space between GO layers with CO₂-philic agent

CO2 permeance: 1,000 GPU CO2/N2 selectivity: 680

membranes with brush-like CO₂-philic agent for highly efficient CO₂ capture

Project overview

- Performance period: June 1, 2018 October 30, 2024
- **Funding**: \$2,914,074 from DOE; \$728,738 cost share
- <u>Objective</u>: Develop a transformational graphene oxide (GO)-based membrane process (GO²) for CO₂ capture with 95% CO₂ purity and a cost of electricity (COE) at least 30% lower than DOE amine reference baseline SC PC plant case

Process description

High-quality GO-based membranes prepared on COC commercially available PES hollow fiber substrate GTI ENERGY

Hollow fiber inner diameter: 1 mm

Membrane surface and cross section

PES = polyether sulfone

In Budget Period 1 (BP1), GO-1 and GO-2 membranes (surface area: ~50 cm²) achieved performance goals GTI ENERGY

	CO₂ permeance, GPU	CO ₂ /N ₂ selectivity
GO-1 goal	1,000	200
GO-1 developed	1,100	300
GO-2 goal	2,500	20
GO-2 developed	2,600	120

- Feed: mixed simulated flue gases
 - GO-1: 8-12 vol% CO₂
 - GO-2: ~4 vol% CO₂
- Temperature: 80°C
- Feed pressure: ~1.0 bara
- Permeate side pressure: 0.2-0.4 bara

Robeson, J. Membrane Sci. **2008**, Vol. 320, p390 Note: Polymer data points (red): 100 nm membrane thickness assumed

BP2: membranes scaled up to 1,000 cm²; bench scale system constructed and installed at NCCC

Material	Fiber ID, mm	Module length, cm	Effective length, cm	# of fibers	Effective surface area, cm ²
PES	1.0	47	41.5	78	1,000

Bench system installed at NCCC

Feed gas at NCCC

 Actual natural gas boiler flue gas was modified to replicate the CO₂ concentrations found in coal flue gas

Gas	Simulated coal-fired flue gas
CO ₂	12.5%-16%
O ₂	3.3%-7.5%
SO ₂	<1ppm
NO ₂	2-3 ppm
Water	80-90% saturation
N ₂	Balance

Parametric tests: As flow rate decreases, capture efficiency increases with a small effect on product purity

	Parameters	T, °C	Pressure, bara		Feed CO ₂				
#			Feed	Permeate	concentration, vol% dry-basis	rate, L/min	efficiency, %	%, dry-basis	
1	Feed flow rate		65	1.2	0.15	15	1.5	75.8	97.4
2		65	1.2	0.15	15	1.0	83.9	96.8	
3		65	1.2	0.15	15	0.9	87.2	96.6	
4		65	1.2	0.15	15	0.8	90.6	96.2	

Parametric tests: Capture efficiency increases as temperature increases with a small effect on purity GTI ENERGY

		T, °C	Pressure, bara		Feed CO ₂	Feed flow	CO ₂ capture	CO ₂ purity
#	Parameters		Feed	Permeate	concentration, vol% dry-basis	rate, L/min	efficiency, %	%, dry- basis
1	Operating temperature	57	1.2	0.15	15	1.0	66.9	96.4
2		60	1.2	0.15	15	1.0	78.9	96.6
3		65	1.2	0.15	15	1.0	83.9	96.8

220-h single-stage testing indicated good dynamic stability and long-term stability

GO-1 membrane	O-1 membrane area, cm2Feed composition, vol%		Feed pressure,	Permeate
area, cm ²			bara	pressure, bara
1,000	16% CO ₂ , 4% O ₂ , 80% N ₂ dry-basis	50	1.06	0.15

Time, h

200-h two-stage (GO² process) continuous testing showed stable performance

Dry-basis feed mixture: 16 vol% CO₂, 4 vol% O₂, 80 vol% N₂; feed mixture is saturated with H₂O

Status of the milestones

Budget Period	M #	Task #	Milestone Title/Description	Planned Completion Date	Actual Completion Date
1	1.1	1	Updated Project Management Plan	11/30/18	9/6/18
1	1.2	1	Kickoff Meeting	1/15/19	2/6/19
1	1.3	1	Technology maturation plan submitted to DOE	1/15/19	12/28/18
1	2.1	2	50-100 cm ² GO membranes prepared	1/30/19	1/15/19
1	2.2	2	For 50-100 cm ² area membranes, GO-1 exhibits CO_2/N_2 selectivity ≥ 100 and CO_2 permeance $\geq 1,000$ GPU and GO-2 exhibits CO_2/N_2 selectivity ≥ 10 and CO_2 permeance $\geq 2,500$ GPU	6/30/19	6/11/19
1	1.4	1	Continuation application for BP2 submitted	12/31/19	12/28/19
1	3.1	3	For 50-100 cm ² area membranes, GO-1 exhibits CO_2/N_2 selectivity ≥200 and CO_2 permeance ≥1,000 GPU and GO-2 exhibits CO_2/N_2 selectivity ≥20 and CO_2 permeance ≥2,500 GPU	2/28/20	12/18/20
1	4.1	4	Stability testing shows the CO_2 permeances and CO_2/N_2 selectivities decreased by less than 10% in the presence of flue gas contaminants	3/31/20	11/23/20
2	1.5	1	Submit BP1 Report	4/30/20	4/15/20
2	5.1	5	For 1,000 cm ² area membranes, GO-1 exhibits CO_2/N_2 selectivity ≥200 and CO_2 permeance ≥1,000 GPU and GO-2 exhibits CO_2/N_2 selectivity ≥20 and CO_2 permeance ≥2,500 GPU	5/31/22	8/25/22
2	6.1	6	CO_2 permeances and CO_2/N_2 selectivities decrease by <10% during a 100-h continuous testing	2/28/23	2/28/23
2	7.1	7	Complete process design for low and high CO_2 flue gas conditions; and process simulation indicates that the CO_2 capture system can achieve $\geq 95\%$ CO_2 purity	9/30/21	9/20/21
2	7.2	7	Constructed skid ready for testing	12/31/21	12/31/21
2	8.1	8	95% CO ₂ purity achieved when testing the constructed GO ² system using simulated flue gas	5/30/23	4/12/23
2	9.1	9	Commissioning complete and system ready for testing at NCCC.	6/30/23	8/19/23
2	9.2	9	1,000 cm ² GO membrane modules shipped to NCCC	6/30/23	8/15/23
2	9.3	9	Skid testing at NCCC complete, 70-90% CO_2 removal rate achieved, 95% CO_2 purity validated, and membrane shows good stability during a 200-h testing	6/30/24	6/3/24
2	10.1	10	Issue technoeconomic analysis (TEA) report	7/31/24	7/31/24
2	1.6	1	Submit Final Technical Report	1/29/25	14

- GTI and UB have developed a transformational graphene oxide-based membrane process for post-combustion CO₂ capture
- Membranes successfully scaled to 1,000 cm² surface area
- Bench-scale system designed, constructed and tested at NCCC
- 220-h single-stage testing indicated good dynamic stability and long-term stability
- 200-h two-stage (GO² process) continuous testing showed stable performance, 70-90% CO₂ removal rate achieved, 95% CO₂ purity validated

Acknowledgements

Financial and technical support

- DOE NETL: Dustin Brown, Andrew O'Palko, José Figueroa, Dan Hancu and Lynn Brickett
- The CCP4: Betty Pun and technical team
- NCCC: Frank Morton and Tony Wu

Disclaimer

This presentation was prepared by GTI Energy as an account of work sponsored by an agency of the United States Government. Neither GTI Energy, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors herein do not necessarily state or reflect those of the United States Government or any agency thereof.