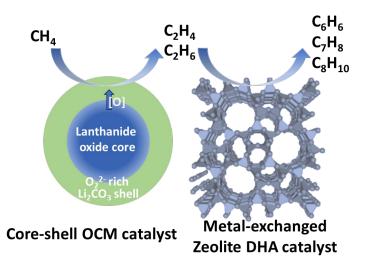


Sustainable Aromatics Manufacturing from Methane via Oxidative Coupling and Aromatization

Presented by Luke M. Neal Catalytic and Redox Solutions

at

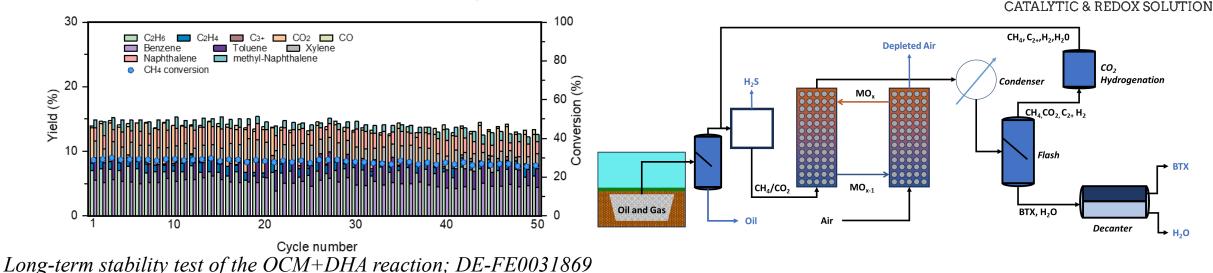

NETL Carbon Management Research Project Review Meeting August 8th, 2024

Technology characteristics

$$2CH_{4}+MO_{x} \rightarrow C_{2}H_{6} + H_{2}O + MO_{x-1}$$

$$2CH_{4}+2MO_{x} \rightarrow C_{2}H_{4} + 2H_{2}O + 2MO_{x-1}$$

$$3C_{2}H_{4} \leftarrow \rightarrow C_{6}H_{6} + 3H_{2}$$


$$MO_{x-1}+Air \rightarrow MO_{x}+N_{2}$$

- Reaction 1a Reaction 1b Reaction 2
- Reaction 3

- Stranded methane is converted into aromatics (BTX) in a 2-steps
 - CL-OCM(Rxn. 1 a&b): Methane is oxidatively coupled over a chemical looping catalyst to form ethane or ethylene
 - DHA(Rxn. 2): The C_2 products are reacted over a zeolite to form aromatics
- To close the chemical looping mass balance the CL-OCM catalyst is regenerated in air (Rxn 3)
- The OCM/regeneration steps provide heat allowing for autothermal operation.
- The hydrogen byproduct can be used to hydrogenate CO₂ to improve ultimate yields
- The feasibility of the chemical looping OC-DHA catalyst was recently validated in DOE-NETL funded project and NCSU and WVU (DE-FE0031869: PM Anthony Zammerilli)

Technology advantages

- 1. Simplified feedstock preparation; The OC-DHA redox catalyst will simultaneously convert C_1 - C_3 components in shale or bio/land fill gas.
- 2. Increased single pass yield and productivity; existing DHA is limited by thermodynamics with 8% single pass CH₄ conversion at 650 °C vs 75% CH₄ conversion for CL-OCM within a single pass. Aromatic yields of ~15% have been demonstrated;
- 3. Simplified product separation and recycle scheme; OC-DHA results in an easy-to-separate product slate consisting of liquids (aromatics and water) and gas (gaseous alkanes and alkenes with small amount of CO_x and unconverted H_2).
- 4. High robustness; The cyclic process periodically regenerates the catalysts.

Planned project approach

- Process Modeling and Techno Economic Analysis
 - The preliminary ASPEN+ model will be evaluated and refined. Literature review and stakeholder outreach will be used to update TEA parameters.
 - The cost of a commercial-scale DHA plant will be estimated and the potential ROI will be estimated.
- Life Cycle Analysis
 - Process modeling will be used to update the cradle-to-gate GHG emissions by using International Standards Organization (ISO) 14040/14044 standards.
- Experimental Process Data Collection and TEA/LCADriven Experimental Validation
 - Previous experimental data will be evaluated for completeness and used as the basis for process modeling.
 - A limited amount of experimental data will be collected in cases where there are gaps in available data/conditions.
- EH&S Risk Assessment, Gap Analysis, and Project Planning
 - A high-level screening hazardous operations review will be done by the project team to identify potential hazards in the conceptual plant and develop mitigation strategies.
 - Based upon the conceptual plant design, TEA, LCA, and stakeholder outreach will be conducted to identify remaining gaps that need to be addressed in phase 2 and beyond.
 - These gaps will be integrated into project planning and detailed scope of work for phase 2.

