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Technology characteristics
• Stranded methane is  converted into 

aromatics (BTX) in a 2-steps
• CL-OCM(Rxn. 1 a&b): Methane is  oxidatively 

coupled over a chemical looping catalyst to 
form ethane or ethylene

• DHA (Rxn. 2): The C2 products  are reacted 
over a zeolite to form aromatics

• To close the chemical looping mass 
balance the CL-OCMcatalyst is  
regenerated in air (Rxn 3)

• The OCM/regeneration steps provide heat 
allowing for autothermal operation.

• The hydrogen byproduct can be used to 
hydrogenate CO2 to improve ultimate yields

• The feasibility of the chemical looping OC-
DHA catalyst was recently validated in 
DOE-NETLfunded project and NCSU and 
WVU (DE-FE0031869: PM Anthony  
Zammerilli)

2CH4+MOx C2H6 + H2O + MOx-1  Reaction 1a
2CH4+2MOx C2H4 +2H2O + 2MOx-1  Reaction 1b
3C2H4  C6H6 + 3H2   Reaction 2
MOx-1+AirMOx+N2   Reaction 3



Technology advantages

• 1. Simplified feedstock preparation; The OC-DHA redox catalyst will s imultaneously convert C1-C3 
components  in shale or bio/landfill gas. 

• 2. Increased s ingle pass  yield and productivity; existing DHA is  limited by thermodynamics with 8% 
single pass  CH4 conversion at 650 °C vs 75% CH4 conversion for CL-OCM within a s ingle pass. 
Aromatic yields of ~15% have been demonstrated; 

• 3. Simplified product separation and recycle scheme; OC-DHA results  in an easy-to-separate product 
s late consisting of liquids (aromatics  and water) and gas (gaseous alkanes and alkenes with small 
amount of COx and unconverted H2). 

• 4. High robustness; The cyclic process periodically regenerates  the catalysts. 

Long-term stability test of the OCM+DHA reaction; DE-FE0031869  



Planned project approach
• Process Modeling and Techno Economic Analysis

• The preliminary ASPEN+ model will be evaluated and refined. Literature review and 
stakeholder outreach will be used to update TEA parameters. 

• The cost of a commercial-scale DHA plant will be estimated and the potential ROI will be 
estimated.

• Life Cycle Analysis
• Process  modeling will be used to update the cradle-to-gate GHG emissions by using 

International Standards Organization (ISO) 14040/14044 standards.
• Experimental Process Data Collection and TEA/LCA Driven Experimental Validation

• Previous experimental data will be evaluated for completeness  and used as  the basis  for 
process  modeling. 

• A limited amount of experimental data will be collected in cases where there are gaps in 
available data/conditions.

• EH&S Risk Assessment, Gap Analysis, and Project Planning
• A high-level screening hazardous operations review will be done by the project team to identify 

potential hazards in the conceptual plant and develop mitigation strategies. 
• Based upon the conceptual plant design, TEA, LCA, and stakeholder outreach will be 

conducted to identify remaining gaps that need to be addressed in phase 2 and beyond.
• These gaps will be integrated into project planning and detailed scope of work for phase 2.  
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