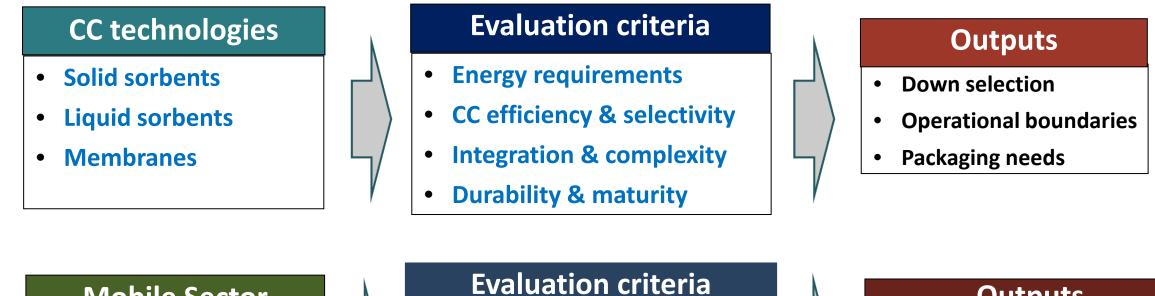


Decarbonization Analysis of Mobile Sources (FWP-FEAA443)

Mike Kass, Oak Ridge National Laboratory Scott Sluder, Charles Finney, Michelle K. Kidder and Vivek Sujan

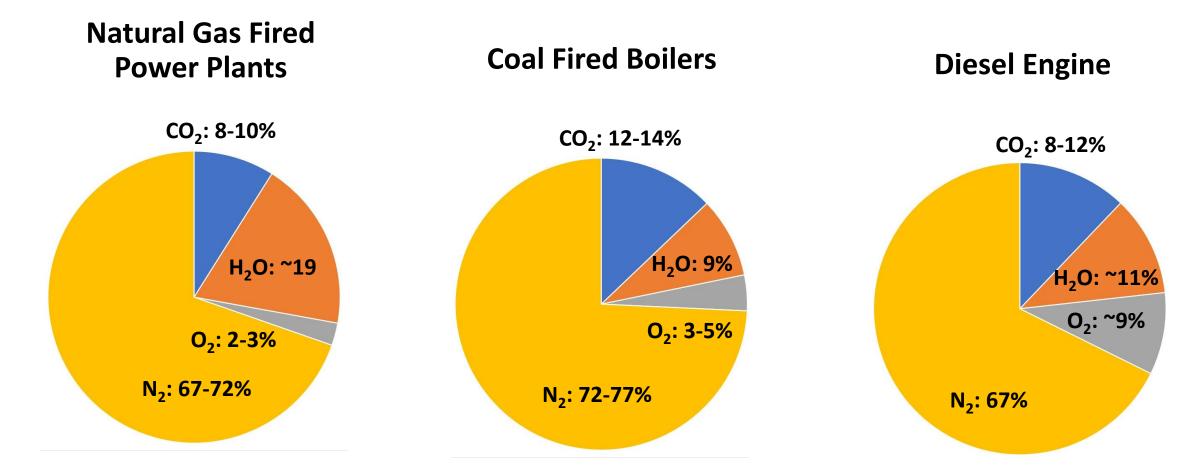
NETL: Greg Hackett, Sally Homsy, Matthew Jamieson, Alex Zoelle, Norma Keuhn, Sydney Hughes and Dustin Brown

2024 FECM/NETL Carbon Management Research Project Review Meeting Pittsburgh, PA Aug 5-9, 2024


ORNL is managed by UT-Battelle LLC for the US Department of Energy

Feasibility analysis for onboard mobile carbon removal roadmap

- **ORNL FY23 FY25**
- \$1M/21 months. NETL-collaboration ٠


- **Mobile Sector**
- HD long haul trucking ullet
- Rail ٠
- Marine (ocean going) •

- Available space
- **Thermodynamic assessment** •
- **Ram airflow** •
- Water accessibility ۲

Outputs

- **Opportunities for waste**heat recovery
- **Opportunities for utilizing** • ram air and water

How does the exhaust for mobile sources differ from natural gas power plant and coal fired boilers?

A conventional diesel engine has more variable operation and will produce more oxygen in the exhaust.

General Exhaust Characteristics

CAK RIDGE

4

	Heavy Duty Truck			Rail ¹		Marine 2-stroke (distillate) 6 cyl ²				
Characteristic	Low load	Typical cruise	High load	Idle	Notch 8*	25% load	50% load	75% load	100% load	
Fuel use, g/s	6	7.7	17.8	5	195	86	164	245	334	
Intake air flow, g/s	158.6	171.3	389.9	1458	6992	10084	14760	20476	22662	
Air/Fuel ratio	26.43	22.2	21.9	345	36	117	90	83.6	67.9	
Exhaust flow, m ³ /s	165	179	407	6.1	27.8	10170	14924	20720	22996	
Exhaust temp, °C*	272	377	257	140	410	224	248	293	349	
CO2, g/s	19.1	24.5	56.2	13.3	606.7	265	338	506.4	1068.6	
H2O, g/s	7.48	9.6	22.02	4.9	223.4	116.4	148.4	222.9	480.4	
NOx, g/s	0.007	0.004	0.002	0.32	10.1	3.5	5.6	10	26.8	
CO, g/s	0.05	0.2	0.14	0.002	0.368	0.24	0.51	0.70	1.4	
HC, g/s	0.009	0.02	0.077	0.032	0.143	0.13	0.15	0.25	0.66	
SO2, g/s	<1ppm	<1ppm	<1ppm	75E6	0.003	<89ppm	<89ppm	<89ppm	<89ppm	
02, %	15	9	5	20	12	17.22	17.81	18	18.6	

¹ Diesel Locomotive Fuel Efficiency & Emissions Testing. Report for NSW EPA. ABMARC. 2016

² DMD-S50MEC-16-1/LR. Technical File. Lloyd's Register Classification Society. 2017

*Note that Notch 8 is a high speed and load operating condition

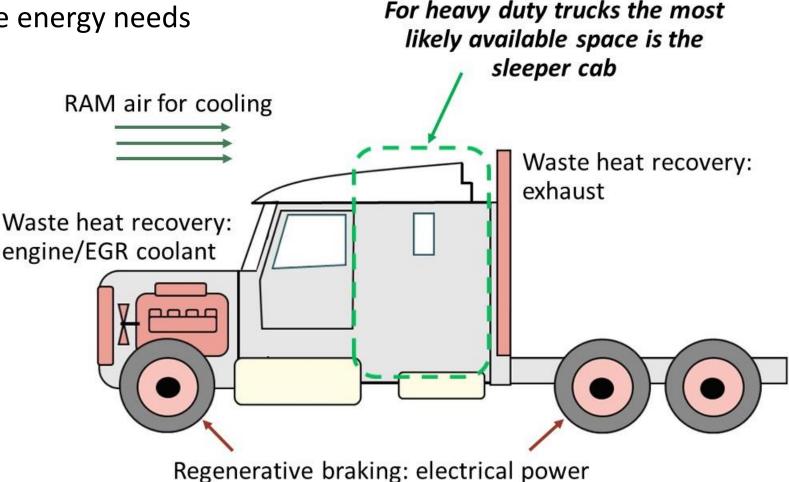
General Exhaust Characteristics

Chanastanistia	Heavy Duty Truck			Rail ¹		Marine 2-stroke (distillate) 6 cyl ²				
Characteristic	Low load	Typical cruise	High load	Idle	Notch 8*	25% load	50% load	75% load	100% load	
Fuel use, g/s	6	7.7	17.8	5	195	86	164	245	334	
Intake air flow, g/s	158.6	171.3	389.9	1458	6992	10084	14760	20476	22662	
Air/Fuel ratio	26.43	22.2	21.9	345	36	117	90	83.6	67.9	
Exhaust flow, m ³ /s	165	179	407	6.1	27.8	10170	14924	20720	22996	
Exhaust temp, °C*	272	377	257	140	410	224	248	293	349	
CO2, g/s	19.1	24.5	56.2	13.3	606.7	265	338	506.4	1068.6	
H2O, g/s	7.48	9.6	22.02	4.9	223.4	116.4	148.4	222.9	480.4	
NOx, g/s	0.007	0.004	0.002	0.32	10.1	3.5	5.6	10	26.8	
CO, g/s	0.05	0.2	0.14	0.002	0.368	0.24	0.51	0.70	1.4	
HC, g/s	0.009	0.02	0.077	0.032	0.143	0.13	0.15	0.25	0.66	
SO2, g/s	<1ppm	<1ppm	<1ppm	75E6	0.003	<89ppm	<89ppm	<89ppm	<89ppm	
02, %	15	9	5	20	12	17.22	17.81	18	18.6	

¹ Diesel Locomotive Fuel Efficiency & Emissions Testing. Report for NSW EPA. ABMARC. 2016

² DMD-S50MEC-16-1/LR. Technical File. Lloyd's Register Classification Society. 2017

*Note that Notch 8 is a high speed and load operating condition


Heavy Duty Trucks: Available space and energy recovery options

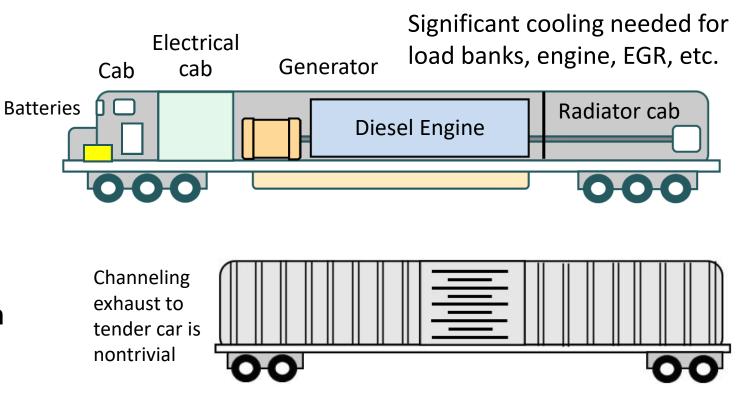
- Working demo produced by Aramco Americas
 - Amine solvent/membrane
 - Onboard regeneration & CO₂ storage
 - Utilized waste heat to reduce energy needs
 - System placed downstream of aftertreatment system
- Demo produced by Remora utilizes solid sorbents

Sleeper cab dimensions:

Height	11ft	3.35m		
Depth	3.5ft	1.07m		
Width	8ft	2.44m		
Volume	308ft ³	8.75m ³		

CAK RIDGE

Available regenerative braking energy for heavy-duty (HD) trucks

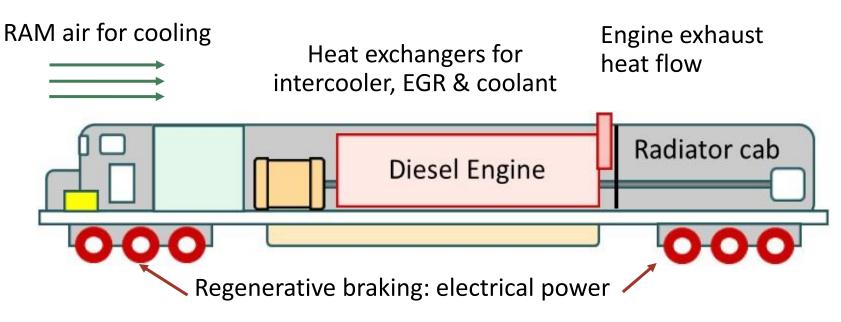

	Diesel Sy	stem Efficienc	Σγ							
HD vehic	le & engine pe	EV regenerative		Δ	nalvsis	indicat	os that	regene	rativo	
Avg. cycle speed	Fuel efficiency	Energy efficiency	braking efficiency			•			or short	
Mph	Mpg	%	%			<u> </u>	C A 11- 1- 1-	De ser Decki		
9.7	6.437	28.4	27.4			Comparisor		ion Energy N	ng Energy with leeds	102
12.9	6.483	34.1	21.4	haul	30 					
16.4	6.486	34.5	21.0			Regen	Braking Pow	er		
19.1	6.507	37.0	18.4	Short	25 -	Power	needed to lie	quify CO2 en	nissions	
22.2	6.530	39.8	15.4	S				•		
27.0	6.778	40.2	14.1		l ≤ 20 €		• • •			•
31.8	7.027	40.5	12.8	a	Energy Rate, MJ/h					
34.9	7.050	43.4	9.8	Regional	15 -	• •		•		•
37.3	7.174	43.5	9.2		r gv					•
40.2	7.329	43.7	8.4	l l x	ш 10 [•			
43.2	7.484	44.0	7.6			•				
46.2	7.639	44.2	6.8	_ ר	5 -	•				
49.2	7.794	44.4	6.0	haul						
52.6	7.748	44.5	4.9	e		10	<u></u> 20	30	 40	 50
54.9	7.716	44.6	4.2	Line		10		e Cycle Spee		20
56.1	7.701	44.7	3.8					nana analar da bara da	ununun U €okingabi€ saitikā €	

••

60

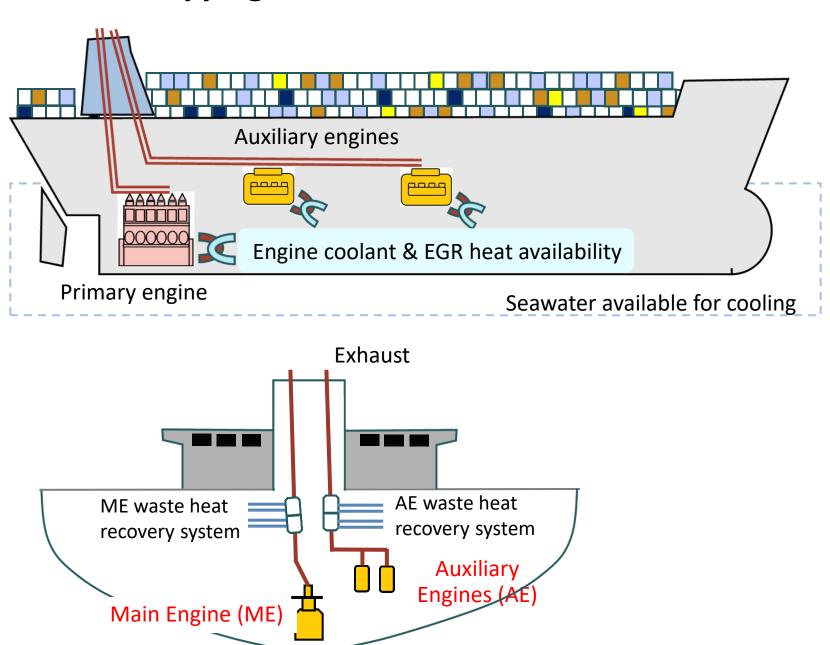
For rail, the most likely space for CO₂ storage is a separate car

- No known demos planned
- Engines have EGR, but no other exhaust aftertreatment
- Anticipated system volume less tanks would be ~ 9000 ft³ (255m³)
- CO₂ tank size, based on 5,000-gallon diesel fuel load would be ~ 1700 ft³ (48m³) based on a 95% capture eff.
- Likely also need to package emissions controls, ~ 300 ft³ (8.5 m³)
- Bottom line: Separate tender car will need to be used.
 Volume can support full CCS system


Box Car dimensions:

Height	10ft	3m		
length	50ft	15m		
Width	10ft	3m		
Volume	50,000ft ³	1415m ³		

Points of energy recovery for rail: exhaust heat and electrical energy available from regenerative braking


- Exhaust heat provides 5 8 kJ/g CO₂ which is sufficient for regeneration of CC solvent (e.g., amine solution)
- Regenerative braking energy currently dissipated as heat could be captured as electricity
 - Around 90 kWh electrical power is needed to liquefy one ton of CO₂. (S. Jackson and E. Brodal 2018 IOP Conf. Ser.: Earth Environ. Sci. 167 012031)

- Mayrink et. al. showed 23.87% of fuel energy used could be recovered from regenerative braking (Energies 2020, 13, 963)
- CO₂ compression and liquefaction would need on the order of 1% of the fuel energy per tank of fuel
- Bottom line: Rail has enough recoverable waste heat and electrical power to power an onboard CCS system

Points of energy recovery for marine shipping: exhaust heat

- In addition to the primary mover (2-stroke engine), ships are also equipped with boilers (to supply heat) and auxiliary (4stroke engines) to provide electrical power
- Exhaust heat is utilized if the exhaust temperature > 250°C
- Seawater available for cooling
- Demonstrations planned for CCS using amine-based solvents
- Other demonstrations have considered limestone as solid sorbent

CAK RIDGE

Summary

- Tabulated exhaust characteristics for each mobile sector option
- Assessed spatial needs and waste energy recovery options
 - HD trucking has known energy penalty associated with onboard CCS. This can be mitigated by regenerative braking for some drive cycles
 - Energy needs for a rail CCS system can be met by waste energy recovery. Penalty associated with towing additional tender car
 - Questions regarding maritime spatial allowances and energy penalties. Several demonstrations are in the works. Multiple approaches are being evaluated
- Future efforts to include:
 - TEA/LCA analysis
 - Baseline competition analysis

Thank you

We gratefully acknowledge support from Dan Hance and Andrew Hlasko

